NATS 和 PostgreSQL 集成

强大性能,轻松集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 NATS 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大性能,无限扩展

收集、组织和处理海量高速数据。任何数据,当您将其视为时序数据时,都更有价值。使用 InfluxDB,第一时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

NATS Consumer 输入插件支持从 NATS 消息主题实时数据消费,无缝集成到 Telegraf 数据管道中,用于监控和指标收集。

Telegraf PostgreSQL 插件允许您高效地将指标写入 PostgreSQL 数据库,同时自动管理数据库模式。

集成详情

NATS

NATS Consumer 插件允许 Telegraf 从指定的 NATS 主题读取指标,并根据支持的输入数据格式创建指标。利用队列组允许多个 Telegraf 实例并行地从 NATS 集群读取数据,从而提高吞吐量和可靠性。此插件还支持多种身份验证方法,包括用户名/密码、NATS 凭据文件和 nkey 种子文件,确保与 NATS 服务器的安全通信。由于 JetStream 等功能有助于消费历史消息,因此在数据持久性和消息可靠性至关重要的环境中,此插件尤其有用。此外,配置各种操作参数的能力使此插件适用于高吞吐量场景,同时保持性能完整性。

PostgreSQL

PostgreSQL 插件使用户能够将指标写入 PostgreSQL 数据库或兼容数据库,通过自动更新缺失的列来提供对模式管理的强大支持。该插件旨在促进与监控解决方案的集成,允许用户高效地存储和管理时序数据。它为连接设置、并发和错误处理提供了可配置的选项,并支持高级功能,例如用于标签和字段的 JSONB 存储、外键标记、模板化模式修改以及通过 pguint 扩展对无符号整数数据类型的支持。

配置

NATS

[[inputs.nats_consumer]]
  ## urls of NATS servers
  servers = ["nats://localhost:4222"]

  ## subject(s) to consume
  ## If you use jetstream you need to set the subjects
  ## in jetstream_subjects
  subjects = ["telegraf"]

  ## jetstream subjects
  ## jetstream is a streaming technology inside of nats.
  ## With jetstream the nats-server persists messages and
  ## a consumer can consume historical messages. This is
  ## useful when telegraf needs to restart it don't miss a
  ## message. You need to configure the nats-server.
  ## https://docs.nats.io/nats-concepts/jetstream.
  jetstream_subjects = ["js_telegraf"]

  ## name a queue group
  queue_group = "telegraf_consumers"

  ## Optional authentication with username and password credentials
  # username = ""
  # password = ""

  ## Optional authentication with NATS credentials file (NATS 2.0)
  # credentials = "/etc/telegraf/nats.creds"

  ## Optional authentication with nkey seed file (NATS 2.0)
  # nkey_seed = "/etc/telegraf/seed.txt"

  ## Use Transport Layer Security
  # secure = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Sets the limits for pending msgs and bytes for each subscription
  ## These shouldn't need to be adjusted except in very high throughput scenarios
  # pending_message_limit = 65536
  # pending_bytes_limit = 67108864

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

PostgreSQL

# Publishes metrics to a postgresql database
[[outputs.postgresql]]
  ## Specify connection address via the standard libpq connection string:
  ##   host=... user=... password=... sslmode=... dbname=...
  ## Or a URL:
  ##   postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
  ## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
  ##
  ## All connection parameters are optional. Environment vars are also supported.
  ## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
  ## All supported vars can be found here:
  ##  https://postgresql.ac.cn/docs/current/libpq-envars.html
  ##
  ## Non-standard parameters:
  ##   pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
  ##   pool_min_conns (default: 0) - Minimum size of connection pool.
  ##   pool_max_conn_lifetime (default: 0s) - Maximum age of a connection before closing.
  ##   pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
  ##   pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
  # connection = ""

  ## Postgres schema to use.
  # schema = "public"

  ## Store tags as foreign keys in the metrics table. Default is false.
  # tags_as_foreign_keys = false

  ## Suffix to append to table name (measurement name) for the foreign tag table.
  # tag_table_suffix = "_tag"

  ## Deny inserting metrics if the foreign tag can't be inserted.
  # foreign_tag_constraint = false

  ## Store all tags as a JSONB object in a single 'tags' column.
  # tags_as_jsonb = false

  ## Store all fields as a JSONB object in a single 'fields' column.
  # fields_as_jsonb = false

  ## Name of the timestamp column
  ## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
  # timestamp_column_name = "time"

  ## Type of the timestamp column
  ## Currently, "timestamp without time zone" and "timestamp with time zone"
  ## are supported
  # timestamp_column_type = "timestamp without time zone"

  ## Templated statements to execute when creating a new table.
  # create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }})''',
  # ]

  ## Templated statements to execute when adding columns to a table.
  ## Set to an empty list to disable. Points containing tags for which there is no column will be skipped. Points
  ## containing fields for which there is no column will have the field omitted.
  # add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## Templated statements to execute when creating a new tag table.
  # tag_table_create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
  # ]

  ## Templated statements to execute when adding columns to a tag table.
  ## Set to an empty list to disable. Points containing tags for which there is no column will be skipped.
  # tag_table_add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## The postgres data type to use for storing unsigned 64-bit integer values (Postgres does not have a native
  ## unsigned 64-bit integer type).
  ## The value can be one of:
  ##   numeric - Uses the PostgreSQL "numeric" data type.
  ##   uint8 - Requires pguint extension (https://github.com/petere/pguint)
  # uint64_type = "numeric"

  ## When using pool_max_conns>1, and a temporary error occurs, the query is retried with an incremental backoff. This
  ## controls the maximum backoff duration.
  # retry_max_backoff = "15s"

  ## Approximate number of tag IDs to store in in-memory cache (when using tags_as_foreign_keys).
  ## This is an optimization to skip inserting known tag IDs.
  ## Each entry consumes approximately 34 bytes of memory.
  # tag_cache_size = 100000

  ## Enable & set the log level for the Postgres driver.
  # log_level = "warn" # trace, debug, info, warn, error, none

输入和输出集成示例

NATS

  1. 实时分析仪表板:使用 NATS 插件从各种 NATS 主题实时收集指标,并将它们馈送到集中的分析仪表板。此设置允许立即查看实时应用程序性能,使团队能够快速响应操作问题或性能下降。

  2. 分布式系统监控:在分布式架构中部署配置了 NATS 插件的多个 Telegraf 实例。此方法允许团队有效地聚合来自各种微服务的指标,提供系统健康和性能的整体视图,同时确保在传输过程中不会丢失任何消息。

  3. 历史消息恢复:利用 NATS JetStream 的功能以及此插件来恢复和处理 Telegraf 重新启动后的历史消息。此功能对于需要高可靠性的应用程序尤其有益,确保即使在服务中断的情况下也不会丢失任何关键指标。

  4. 动态负载均衡:实施动态负载均衡场景,其中 Telegraf 实例根据负载从 NATS 集群消费消息。调整队列组设置以控制活动消费者的数量,从而在需求波动发生时实现更好的资源利用率和性能扩展。

PostgreSQL

  1. 使用复杂查询进行实时分析:利用 PostgreSQL 插件将来自各种来源的指标存储在 PostgreSQL 数据库中,从而可以使用复杂查询进行实时分析。此设置可以帮助数据科学家和分析师发现模式和趋势,因为他们可以跨多个表操作关系数据,同时利用 PostgreSQL 强大的查询优化功能。具体来说,用户可以使用跨不同指标表的 JOIN 操作创建复杂的报告,从而揭示通常在嵌入式系统中隐藏的见解。

  2. 与 TimescaleDB 集成以进行时序数据处理:在 TimescaleDB 实例中使用 PostgreSQL 插件,以高效地处理和分析时序数据。通过实施超表,用户可以在时间维度上实现更高的性能和主题分区。此集成允许用户对大量的时序数据运行分析查询,同时保留 PostgreSQL SQL 查询的全部功能,从而确保指标分析的可靠性和效率。

  3. 数据版本控制和历史分析:实施使用 PostgreSQL 插件的策略,以维护指标随时间的不同版本。用户可以设置不可变的数据表结构,其中保留旧版本的表,从而轻松进行历史分析。这种方法不仅提供了对数据演变的见解,还有助于遵守数据保留策略,确保数据集的历史完整性保持不变。

  4. 动态模式管理以适应不断变化的指标:使用插件的模板功能来创建动态变化的模式,以响应指标变化。此用例允许组织在指标演变时调整其数据结构,添加必要的字段并确保遵守数据完整性策略。通过利用模板化的 SQL 命令,用户无需手动干预即可扩展其数据库,从而促进敏捷的数据管理实践。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大性能,无限扩展

收集、组织和处理海量高速数据。任何数据,当您将其视为时序数据时,都更有价值。使用 InfluxDB,第一时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流读取指标。它支持多种输入数据格式,并提供与 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成