MQTT 和 Clickhouse 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

这不是大规模实时查询的推荐配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 MQTT 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。借助 InfluxDB,排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

MQTT Telegraf 插件旨在从指定的 MQTT 主题读取数据并创建指标,使用户能够利用 MQTT 进行实时数据收集和监控。

Telegraf 的 SQL 插件使用直接的表模式和动态列生成将收集的指标发送到 SQL 数据库。当配置为 ClickHouse 时,它会调整 DSN 格式和类型转换设置,以确保无缝数据集成。

集成详情

MQTT

MQTT 插件允许从指定的 MQTT 主题读取指标,并使用支持的输入数据格式创建指标。此插件作为服务输入运行,它监听传入的指标或事件,而不是像普通插件那样按设定的时间间隔收集它们。该插件的灵活性通过支持各种代理 URL、主题和连接功能(包括服务质量 (QoS) 级别和持久会话)得到增强。其配置选项包含用于修改指标和有效处理启动错误的全局设置。它还支持用于保护用户名和密码选项的密钥存储配置,从而确保与 MQTT 服务器的安全连接。

Clickhouse

Telegraf 的 SQL 插件旨在通过基于传入指标动态创建表和列,将指标数据写入 SQL 数据库。当配置为 ClickHouse 时,它使用 clickhouse-go v1.5.4 驱动程序,该驱动程序采用独特的 DSN 格式和一组专门的类型转换规则,将 Telegraf 的数据类型直接映射到 ClickHouse 的原生类型。这种方法确保了在高吞吐量环境中的最佳存储和检索性能,使其非常适合实时分析和大规模数据仓库。动态模式创建和精确的类型映射实现了详细的时序数据日志记录,这对于监控现代分布式系统至关重要。

配置

MQTT


[[inputs.mqtt_consumer]]
  servers = ["tcp://127.0.0.1:1883"]
  topics = [
    "telegraf/host01/cpu",
    "telegraf/+/mem",
    "sensors/#",
  ]
  # topic_tag = "topic"
  # qos = 0
  # connection_timeout = "30s"
  # keepalive = "60s"
  # ping_timeout = "10s"
  # max_undelivered_messages = 1000
  # persistent_session = false
  # client_id = ""
  # username = "telegraf"
  # password = "metricsmetricsmetricsmetrics"
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  # insecure_skip_verify = false
  # client_trace = false
  data_format = "influx"
  # [[inputs.mqtt_consumer.topic_parsing]]
  #   topic = ""
  #   measurement = ""
  #   tags = ""
  #   fields = ""
  #   [inputs.mqtt_consumer.topic_parsing.types]
  #      key = type

Clickhouse

[[outputs.sql]]
  ## Database driver
  ## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
  driver = "clickhouse"

  ## Data source name
  ## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
  ## Example DSN: "tcp://localhost:9000?debug=true"
  data_source_name = "tcp://localhost:9000?debug=true"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion for ClickHouse.
  ## The conversion maps Telegraf metric types to ClickHouse native data types.
  [outputs.sql.convert]
    conversion_style = "literal"
    integer          = "Int64"
    text             = "String"
    timestamp        = "DateTime"
    defaultvalue     = "String"
    unsigned         = "UInt64"
    bool             = "UInt8"
    real             = "Float64"

输入和输出集成示例

MQTT

  1. 智能家居监控:使用 MQTT Consumer 插件来监控智能家居设置中的各种传感器。在这种情况下,可以将插件配置为订阅不同设备的主题,例如温度、湿度和能耗。通过聚合这些数据,房主可以可视化趋势并接收异常模式的警报,从而提高家庭自动化系统的整体质量和效率。

  2. 物联网环境传感:部署 MQTT Consumer 来收集来自分布在不同位置的传感器的环境数据。例如,这可以包括来自空气质量传感器、温度传感器和噪声水平仪的读数。可以将插件配置为从 MQTT 主题中提取相关的标签和字段,从而可以对大规模的环境条件进行详细的分析和报告,支持城市规划或环境倡议的更好决策。

  3. 实时车辆跟踪和遥测:将 MQTT Consumer 插件集成到车辆遥测系统中,该系统实时收集来自各种传感器的数据。借助该插件,与车辆性能、位置和燃料消耗相关的指标可以发送到中央监控仪表板。这种实时遥测数据使车队管理者能够通过主动数据分析来优化路线、降低燃料成本和改进车辆维护计划。

  4. 农业监控系统:利用此插件来收集来自农业传感器的数据,这些传感器监控土壤湿度、作物健康状况和天气条件。MQTT Consumer 可以订阅与农业设备和环境传感器相关的多个主题,使农民能够做出数据驱动的决策,以提高作物产量,同时节约资源,从而提高农业的可持续性。

Clickhouse

  1. 高容量数据的实时分析:使用该插件将来自大规模系统的流式指标馈送到 ClickHouse 中。此设置支持超快的查询性能和近乎实时的分析,非常适合监控高流量应用程序。

  2. 时序数据仓库:将该插件与 ClickHouse 集成以创建强大的时序数据仓库。此用例允许组织存储详细的历史指标,并执行复杂的查询以进行趋势分析和容量规划。

  3. 分布式环境中的可扩展监控:利用该插件在 ClickHouse 中动态创建每个指标类型的表,从而更轻松地管理和查询来自大量分布式系统的数据,而无需预先定义模式。

  4. 物联网部署的优化存储:部署该插件以将来自物联网传感器的数据摄取到 ClickHouse 中。其高效的模式创建和原生类型映射有助于处理海量数据,从而实现实时监控和预测性维护。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。借助 InfluxDB,排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成