目录
强大的性能,无限的扩展
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法
输入和输出集成概述
MQTT Telegraf 插件旨在从指定的 MQTT 主题读取数据并创建指标,使用户能够利用 MQTT 进行实时数据收集和监控。
Azure 数据资源管理器插件允许将指标收集与 Azure 数据资源管理器集成,使用户能够高效地分析和查询其遥测数据。借助此插件,用户可以配置摄取设置以满足其需求,并利用 Azure 强大的分析功能。
集成详情
MQTT
MQTT 插件允许从指定的 MQTT 主题读取指标,并使用支持的输入数据格式创建指标。此插件作为服务输入运行,监听传入的指标或事件,而不是像普通插件那样按设定的时间间隔收集它们。该插件的灵活性通过支持各种代理 URL、主题和连接功能(包括服务质量 (QoS) 级别和持久会话)得到增强。其配置选项包含全局设置,可有效地修改指标并处理启动错误。它还支持用于保护用户名和密码选项的密钥存储配置,确保与 MQTT 服务器的安全连接。
Azure 数据资源管理器
Azure 数据资源管理器插件允许用户将从各种 Telegraf 输入插件收集的指标、日志和时间序列数据写入 Azure 数据资源管理器、Azure Synapse 和 Fabric 中的实时分析。这种集成充当桥梁,使应用程序和服务能够有效地监控其性能指标或日志。Azure 数据资源管理器针对对大量不同数据类型进行分析进行了优化,使其成为云环境中实时分析和监控解决方案的绝佳选择。该插件使用户能够根据其需求配置指标摄取,动态定义表架构,并设置各种摄取方法,同时保留数据库操作所需的角色和权限方面的灵活性。这支持现代应用程序的可扩展和安全监控设置,这些应用程序利用云服务。
配置
MQTT
[[inputs.mqtt_consumer]]
servers = ["tcp://127.0.0.1:1883"]
topics = [
"telegraf/host01/cpu",
"telegraf/+/mem",
"sensors/#",
]
# topic_tag = "topic"
# qos = 0
# connection_timeout = "30s"
# keepalive = "60s"
# ping_timeout = "10s"
# max_undelivered_messages = 1000
# persistent_session = false
# client_id = ""
# username = "telegraf"
# password = "metricsmetricsmetricsmetrics"
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
# insecure_skip_verify = false
# client_trace = false
data_format = "influx"
# [[inputs.mqtt_consumer.topic_parsing]]
# topic = ""
# measurement = ""
# tags = ""
# fields = ""
# [inputs.mqtt_consumer.topic_parsing.types]
# key = type
Azure 数据资源管理器
[[outputs.azure_data_explorer]]
## The URI property of the Azure Data Explorer resource on Azure
## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
endpoint_url = ""
## The Azure Data Explorer database that the metrics will be ingested into.
## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
## ex: "exampledatabase"
database = ""
## Timeout for Azure Data Explorer operations
# timeout = "20s"
## Type of metrics grouping used when pushing to Azure Data Explorer.
## Default is "TablePerMetric" for one table per different metric.
## For more information, please check the plugin README.
# metrics_grouping_type = "TablePerMetric"
## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
# table_name = ""
## Creates tables and relevant mapping if set to true(default).
## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
# create_tables = true
## Ingestion method to use.
## Available options are
## - managed -- streaming ingestion with fallback to batched ingestion or the "queued" method below
## - queued -- queue up metrics data and process sequentially
# ingestion_type = "queued"
输入和输出集成示例
MQTT
-
智能家居监控:使用 MQTT Consumer 插件监控智能家居设置中的各种传感器。在这种情况下,可以将插件配置为订阅不同设备的主题,例如温度、湿度和能源消耗。通过聚合这些数据,房主可以可视化趋势并接收异常模式的警报,从而提高家庭自动化系统的整体质量和效率。
-
物联网环境传感:部署 MQTT Consumer 从分布在不同位置的传感器收集环境数据。例如,这可以包括来自空气质量传感器、温度传感器和噪声水平计的读数。可以将插件配置为从 MQTT 主题中提取相关的标签和字段,从而可以对大规模的环境条件进行详细分析和报告,为城市规划或环境倡议提供更好的决策支持。
-
实时车辆跟踪和遥测:在车辆遥测系统中集成 MQTT Consumer 插件,该系统实时收集来自各种传感器的数据。借助该插件,可以将与车辆性能、位置和燃油消耗相关的指标发送到集中监控仪表板。这种实时遥测数据使车队管理者能够通过主动数据分析来优化路线、降低燃油成本和改进车辆维护计划。
-
农业监控系统:利用此插件从监控土壤湿度、作物健康和天气条件的农业传感器收集数据。MQTT Consumer 可以订阅与农业设备和环境传感器相关的多个主题,使农民能够做出数据驱动的决策,以提高作物产量,同时节约资源,从而提高农业的可持续性。
Azure 数据资源管理器
-
实时监控仪表板:通过使用此插件将来自各种服务的指标集成到 Azure 数据资源管理器中,组织可以构建反映实时性能指标的综合仪表板。这使团队能够主动响应性能问题并立即优化系统健康状况。
-
集中式日志管理:利用 Azure 数据资源管理器来整合来自多个应用程序和服务的日志。通过利用该插件,组织可以简化其日志分析流程,从而更轻松地搜索、过滤和从长期积累的历史数据中获得洞察力。
-
数据驱动的警报系统:通过根据通过此插件发送的指标配置警报来增强监控功能。组织可以设置阈值并自动化事件响应,从而显着减少停机时间并提高关键操作的可靠性。
-
机器学习模型训练:通过利用发送到 Azure 数据资源管理器的数据,组织可以执行大规模分析并准备数据以供输入机器学习模型。此插件能够构建数据结构,这些数据随后可用于预测分析,从而增强决策能力。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法