Modbus 和 VictoriaMetrics 集成

通过 InfluxData 构建的开源数据连接器 Telegraf,实现强大的性能和简单的集成。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Modbus 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会变得更有价值。InfluxDB 是排名第一的时间序列平台,旨在通过 Telegraf 进行扩展。

查看入门方法

输入和输出集成概述

Modbus 插件允许您使用各种通信方法从 Modbus 设备收集数据,从而增强您监控和控制工业流程的能力。

此插件使 Telegraf 能够使用 InfluxDB 行协议将指标高效地直接写入 VictoriaMetrics,从而利用 VictoriaMetrics 在大规模时间序列数据方面的性能和可扩展性特性。

集成详情

Modbus

Modbus 插件通过 Modbus TCP 或 Modbus RTU/ASCII 收集离散输入、线圈、输入寄存器和保持寄存器。

VictoriaMetrics

VictoriaMetrics 支持直接摄取 InfluxDB 行协议中的指标,使此插件成为高效实时指标存储和检索的理想选择。该集成结合了 Telegraf 广泛的指标收集功能和 VictoriaMetrics 优化的存储和查询功能,包括压缩、快速摄取率和高效的磁盘利用率。此插件非常适合云原生和大规模监控场景,具有简单性、强大的性能和高可靠性,为大量指标提供高级操作见解和长期存储解决方案。

配置

Modbus

[[inputs.modbus]]
  name = "Device"
  slave_id = 1
  timeout = "1s"
  configuration_type = "register"
  discrete_inputs = [
    { name = "start", address = [0]},
    { name = "stop", address = [1]},
    { name = "reset", address = [2]},
    { name = "emergency_stop", address = [3]},
  ]
  coils = [
    { name = "motor1_run", address = [0]},
    { name = "motor1_jog", address = [1]},
    { name = "motor1_stop", address = [2]},
  ]
  holding_registers = [
    { name = "power_factor", byte_order = "AB", data_type = "FIXED", scale=0.01, address = [8]},
    { name = "voltage", byte_order = "AB", data_type = "FIXED", scale=0.1, address = [0]},
    { name = "energy", byte_order = "ABCD", data_type = "FIXED", scale=0.001, address = [5,6]},
    { name = "current", byte_order = "ABCD", data_type = "FIXED", scale=0.001, address = [1,2]},
    { name = "frequency", byte_order = "AB", data_type = "UFIXED", scale=0.1, address = [7]},
    { name = "power", byte_order = "ABCD", data_type = "UFIXED", scale=0.1, address = [3,4]},
    { name = "firmware", byte_order = "AB", data_type = "STRING", address = [5, 6, 7, 8, 9, 10, 11, 12]},
  ]
  input_registers = [
    { name = "tank_level", byte_order = "AB", data_type = "INT16", scale=1.0, address = [0]},
    { name = "tank_ph", byte_order = "AB", data_type = "INT16", scale=1.0, address = [1]},
    { name = "pump1_speed", byte_order = "ABCD", data_type = "INT32", scale=1.0, address = [3,4]},
  ]

VictoriaMetrics

[[outputs.influxdb]]
  ## URL of the VictoriaMetrics write endpoint
  urls = ["http://localhost:8428"]

  ## VictoriaMetrics accepts InfluxDB line protocol directly
  database = "db_name"

  ## Optional authentication
  # username = "username"
  # password = "password"
  # skip_database_creation = true
  # exclude_retention_policy_tag = true
  # content_encoding = "gzip"

  ## Timeout for HTTP requests
  timeout = "5s"

  ## Optional TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

输入和输出集成示例

Modbus

  1. 基本用法:要从单个设备读取数据,请使用设备名称和 IP 地址配置它,指定从站 ID 和感兴趣的寄存器。
  2. 多个请求:您可以通过指定多个 [[inputs.modbus.request]] 部分,在单个配置中定义多个请求以从不同的 Modbus 从站设备获取数据。
  3. 数据处理:利用缩放功能将原始 Modbus 读数转换为有用的指标,并根据需要调整单位转换。

VictoriaMetrics

  1. 云原生应用程序监控:将 Kubernetes 上部署的微服务中的指标直接流式传输到 VictoriaMetrics。通过集中化指标,组织可以执行实时监控、快速异常检测以及跨动态演进的云环境的无缝可扩展性。

  2. 可扩展的物联网数据管理:使用此插件将来自物联网部署的传感器数据摄取到 VictoriaMetrics 中。这种方法有助于实时分析、预测性维护以及以最小的存储开销高效管理海量传感器数据。

  3. 金融系统性能跟踪:通过此插件利用 VictoriaMetrics 存储和分析来自金融系统的指标,捕获延迟、交易量和错误率。组织可以快速识别和解决性能瓶颈,确保高可用性和法规遵从性。

  4. 跨环境性能仪表板:将来自各种基础设施组件(例如云实例、容器和物理服务器)的指标集成到 VictoriaMetrics 中。使用可视化工具,团队可以构建全面的仪表板,以实现端到端性能可见性、主动故障排除和基础设施优化。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会变得更有价值。InfluxDB 是排名第一的时间序列平台,旨在通过 Telegraf 进行扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成