Modbus 和 Mimir 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Modbus 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB-Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。使用 InfluxDB,这个 #1 的时间序列平台旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Modbus 插件允许您使用各种通信方法从 Modbus 设备收集数据,从而增强您监控和控制工业流程的能力。

此插件使用 HTTP 将 Telegraf 指标直接发送到 Grafana Mimir 数据库,为 Prometheus 兼容指标提供可扩展且高效的长期存储和分析。

集成详情

Modbus

Modbus 插件通过 Modbus TCP 或 Modbus RTU/ASCII 收集离散输入、线圈、输入寄存器和保持寄存器。

Mimir

Grafana Mimir 支持 Prometheus Remote Write 协议,使 Telegraf 收集的指标能够高效地摄取到 Mimir 集群中,以实现大规模、长期存储。此集成利用 Prometheus 成熟的标准,允许用户将 Telegraf 广泛的数据收集功能与 Mimir 的高级功能相结合,例如查询联邦、多租户、高可用性和经济高效的存储。 Grafana Mimir 的架构经过优化,可处理大量指标数据并提供快速查询响应,使其成为复杂监控环境和分布式系统的理想选择。

配置

Modbus

[[inputs.modbus]]
  name = "Device"
  slave_id = 1
  timeout = "1s"
  configuration_type = "register"
  discrete_inputs = [
    { name = "start", address = [0]},
    { name = "stop", address = [1]},
    { name = "reset", address = [2]},
    { name = "emergency_stop", address = [3]},
  ]
  coils = [
    { name = "motor1_run", address = [0]},
    { name = "motor1_jog", address = [1]},
    { name = "motor1_stop", address = [2]},
  ]
  holding_registers = [
    { name = "power_factor", byte_order = "AB", data_type = "FIXED", scale=0.01, address = [8]},
    { name = "voltage", byte_order = "AB", data_type = "FIXED", scale=0.1, address = [0]},
    { name = "energy", byte_order = "ABCD", data_type = "FIXED", scale=0.001, address = [5,6]},
    { name = "current", byte_order = "ABCD", data_type = "FIXED", scale=0.001, address = [1,2]},
    { name = "frequency", byte_order = "AB", data_type = "UFIXED", scale=0.1, address = [7]},
    { name = "power", byte_order = "ABCD", data_type = "UFIXED", scale=0.1, address = [3,4]},
    { name = "firmware", byte_order = "AB", data_type = "STRING", address = [5, 6, 7, 8, 9, 10, 11, 12]},
  ]
  input_registers = [
    { name = "tank_level", byte_order = "AB", data_type = "INT16", scale=1.0, address = [0]},
    { name = "tank_ph", byte_order = "AB", data_type = "INT16", scale=1.0, address = [1]},
    { name = "pump1_speed", byte_order = "ABCD", data_type = "INT32", scale=1.0, address = [3,4]},
  ]

Mimir

[[outputs.http]]
  url = "http://data-load-balancer-backend-1:9009/api/v1/push"
  data_format = "prometheusremotewrite"
  username = "*****"
  password = "******"
  [outputs.http.headers]
     Content-Type = "application/x-protobuf"
     Content-Encoding = "snappy"
     X-Scope-OrgID = "****"

输入和输出集成示例

Modbus

  1. 基本用法:要从单个设备读取数据,请使用设备名称和 IP 地址配置它,指定从站 ID 和感兴趣的寄存器。
  2. 多个请求:您可以通过指定多个 [[inputs.modbus.request]] 部分,在单个配置中定义多个请求以从不同的 Modbus 从站设备获取数据。
  3. 数据处理:利用缩放功能将原始 Modbus 读数转换为有用的指标,并根据需要调整单位转换。

Mimir

  1. 企业级 Kubernetes 监控:将 Telegraf 与 Grafana Mimir 集成,以企业级规模从 Kubernetes 集群流式传输指标。这实现了全面的可见性、改进的资源分配以及跨数百个集群的主动故障排除,从而利用了 Mimir 的横向可扩展性和高可用性。

  2. 多租户 SaaS 应用程序可观测性:使用此插件将来自不同 SaaS 租户的指标集中到 Grafana Mimir 中,从而实现租户隔离和基于资源使用情况的准确计费。这种方法提供可靠的可观测性、高效的成本管理和安全的多租户支持。

  3. 全球边缘网络性能跟踪:将来自全球分布式边缘服务器的延迟和可用性指标流式传输到 Grafana Mimir 中。组织可以快速识别性能下降或中断,利用 Mimir 的快速查询功能来确保最佳的服务可靠性和用户体验。

  4. 高容量微服务的实时分析:在高容量微服务架构中实施 Telegraf 指标收集,将数据馈送到 Grafana Mimir 以进行实时分析和异常检测。 Mimir 强大的查询功能使团队能够检测异常并快速响应,从而保持高服务可用性和性能。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。使用 InfluxDB,这个 #1 的时间序列平台旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成