Modbus 和 InfluxDB 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概览

Modbus 插件允许您使用各种通信方法从 Modbus 设备收集数据,从而增强您监控和控制工业流程的能力。

InfluxDB 插件将指标写入 InfluxDB HTTP 服务,从而实现时间序列数据的有效存储和检索。

集成详情

Modbus

Modbus 插件通过 Modbus TCP 或 Modbus RTU/ASCII 收集离散输入、线圈、输入寄存器和保持寄存器。

InfluxDB

InfluxDB Telegraf 插件用于将指标发送到 InfluxDB HTTP API,从而促进以结构化方式存储和查询时间序列数据。该插件与 InfluxDB 无缝集成,提供诸如基于令牌的身份验证和对多个 InfluxDB 集群节点的支持等重要功能,从而确保可靠且可扩展的数据摄取。通过其可配置性,用户可以指定诸如组织、目标存储桶和 HTTP 特定设置等选项,从而灵活地定制数据的发送和存储方式。该插件还支持敏感数据的密钥管理,从而增强生产环境中的安全性。此插件在现代可观测性堆栈中尤其有益,在这些堆栈中,实时分析和时间序列数据的存储至关重要。

配置

Modbus

[[inputs.modbus]]
  name = "Device"
  slave_id = 1
  timeout = "1s"
  configuration_type = "register"
  discrete_inputs = [
    { name = "start", address = [0]},
    { name = "stop", address = [1]},
    { name = "reset", address = [2]},
    { name = "emergency_stop", address = [3]},
  ]
  coils = [
    { name = "motor1_run", address = [0]},
    { name = "motor1_jog", address = [1]},
    { name = "motor1_stop", address = [2]},
  ]
  holding_registers = [
    { name = "power_factor", byte_order = "AB", data_type = "FIXED", scale=0.01, address = [8]},
    { name = "voltage", byte_order = "AB", data_type = "FIXED", scale=0.1, address = [0]},
    { name = "energy", byte_order = "ABCD", data_type = "FIXED", scale=0.001, address = [5,6]},
    { name = "current", byte_order = "ABCD", data_type = "FIXED", scale=0.001, address = [1,2]},
    { name = "frequency", byte_order = "AB", data_type = "UFIXED", scale=0.1, address = [7]},
    { name = "power", byte_order = "ABCD", data_type = "UFIXED", scale=0.1, address = [3,4]},
    { name = "firmware", byte_order = "AB", data_type = "STRING", address = [5, 6, 7, 8, 9, 10, 11, 12]},
  ]
  input_registers = [
    { name = "tank_level", byte_order = "AB", data_type = "INT16", scale=1.0, address = [0]},
    { name = "tank_ph", byte_order = "AB", data_type = "INT16", scale=1.0, address = [1]},
    { name = "pump1_speed", byte_order = "ABCD", data_type = "INT32", scale=1.0, address = [3,4]},
  ]

InfluxDB

[[outputs.influxdb]]
  ## The full HTTP or UDP URL for your InfluxDB instance.
  ##
  ## Multiple URLs can be specified for a single cluster, only ONE of the
  ## urls will be written to each interval.
  # urls = ["unix:///var/run/influxdb.sock"]
  # urls = ["udp://127.0.0.1:8089"]
  # urls = ["http://127.0.0.1:8086"]

  ## Local address to bind when connecting to the server
  ## If empty or not set, the local address is automatically chosen.
  # local_address = ""

  ## The target database for metrics; will be created as needed.
  ## For UDP url endpoint database needs to be configured on server side.
  # database = "telegraf"

  ## The value of this tag will be used to determine the database.  If this
  ## tag is not set the 'database' option is used as the default.
  # database_tag = ""

  ## If true, the 'database_tag' will not be included in the written metric.
  # exclude_database_tag = false

  ## If true, no CREATE DATABASE queries will be sent.  Set to true when using
  ## Telegraf with a user without permissions to create databases or when the
  ## database already exists.
  # skip_database_creation = false

  ## Name of existing retention policy to write to.  Empty string writes to
  ## the default retention policy.  Only takes effect when using HTTP.
  # retention_policy = ""

  ## The value of this tag will be used to determine the retention policy.  If this
  ## tag is not set the 'retention_policy' option is used as the default.
  # retention_policy_tag = ""

  ## If true, the 'retention_policy_tag' will not be included in the written metric.
  # exclude_retention_policy_tag = false

  ## Write consistency (clusters only), can be: "any", "one", "quorum", "all".
  ## Only takes effect when using HTTP.
  # write_consistency = "any"

  ## Timeout for HTTP messages.
  # timeout = "5s"

  ## HTTP Basic Auth
  # username = "telegraf"
  # password = "metricsmetricsmetricsmetrics"

  ## HTTP User-Agent
  # user_agent = "telegraf"

  ## UDP payload size is the maximum packet size to send.
  # udp_payload = "512B"

  ## Optional TLS Config for use on HTTP connections.
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## HTTP Proxy override, if unset values the standard proxy environment
  ## variables are consulted to determine which proxy, if any, should be used.
  # http_proxy = "http://corporate.proxy:3128"

  ## Additional HTTP headers
  # http_headers = {"X-Special-Header" = "Special-Value"}

  ## HTTP Content-Encoding for write request body, can be set to "gzip" to
  ## compress body or "identity" to apply no encoding.
  # content_encoding = "gzip"

  ## When true, Telegraf will output unsigned integers as unsigned values,
  ## i.e.: "42u".  You will need a version of InfluxDB supporting unsigned
  ## integer values.  Enabling this option will result in field type errors if
  ## existing data has been written.
  # influx_uint_support = false

  ## When true, Telegraf will omit the timestamp on data to allow InfluxDB
  ## to set the timestamp of the data during ingestion. This is generally NOT
  ## what you want as it can lead to data points captured at different times
  ## getting omitted due to similar data.
  # influx_omit_timestamp = false

输入和输出集成示例

Modbus

  1. 基本用法:要从单个设备读取数据,请使用设备名称和 IP 地址配置它,指定从站 ID 和感兴趣的寄存器。
  2. 多个请求:您可以通过指定多个 [[inputs.modbus.request]] 部分,定义多个请求以从单个配置中的不同 Modbus 从站设备获取数据。
  3. 数据处理:利用缩放功能将原始 Modbus 读数转换为有用的指标,根据需要调整单位转换。

InfluxDB

  1. 实时系统监控:利用 InfluxDB 插件捕获和存储来自各种系统组件(例如 CPU 使用率、内存消耗和磁盘 I/O)的指标。通过将这些指标推送到 InfluxDB,您可以创建实时仪表板,可视化实时系统性能。此设置不仅有助于识别性能瓶颈,还可以通过分析随时间变化的趋势来协助主动容量规划。

  2. Web 应用程序的性能跟踪:自动收集并将与 Web 应用程序性能相关的指标(例如请求持续时间、错误率和用户交互)推送到 InfluxDB。通过在您的监控堆栈中使用此插件,您可以使用存储的指标生成报告和分析,以帮助了解用户行为和应用程序效率,从而指导开发和优化工作。

  3. 物联网数据聚合:利用 InfluxDB Telegraf 插件从各种物联网设备收集传感器数据,并将其存储在集中式 InfluxDB 实例中。此用例使您能够分析随时间变化的环境或机器数据中的趋势和模式,从而促进更明智的决策和预测性维护策略。通过将物联网数据集成到 InfluxDB 中,组织可以利用历史数据分析的力量来推动创新和运营效率。

  4. 分析历史指标以进行预测:设置 InfluxDB 插件以将历史指标数据发送到 InfluxDB,并使用它来驱动预测模型。通过分析过去的性能指标,您可以创建预测未来趋势和需求的预测模型。此应用程序对于商业智能目的尤其有用,可帮助组织根据历史使用模式为资源需求的波动做好准备。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成