Mesos 和 TimescaleDB 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

这不是实时大规模查询的推荐配置。 为了获得查询和压缩优化、高速摄取和高可用性,您可能需要考虑Mesos 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 的下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此输入插件从 Mesos 收集指标。

此输出插件提供了一种可靠高效的机制,用于将 Telegraf 收集的指标直接路由到 TimescaleDB。 通过利用 PostgreSQL 强大的生态系统以及 TimescaleDB 的时间序列优化,它支持高性能数据摄取和高级查询功能。

集成详情

Mesos

Telegraf 的 Mesos 插件旨在收集和报告来自 Apache Mesos 集群的指标,这对于容器编排和资源管理中的监控和可观察性至关重要。 Mesos 以其可扩展性和管理各种工作负载的能力而闻名,它生成有关资源使用、任务、框架和整体系统性能的各种指标。 通过使用此插件,用户可以跟踪其 Mesos 集群的健康状况和效率,深入了解资源分配,并确保应用程序及时获得必要的资源。 配置允许用户指定相关的 Mesos 主服务器详细信息,以及要收集的所需指标组,使其能够适应不同的部署和监控需求。 总体而言,此插件无缝集成到 Telegraf 收集管道中,为云原生环境提供详细的可观察性支持。

TimescaleDB

TimescaleDB 是一个开源时间序列数据库,作为 PostgreSQL 的扩展构建,旨在高效处理大规模、面向时间的数据。 TimescaleDB 于 2017 年推出,旨在响应对强大、可扩展的解决方案日益增长的需求,该解决方案可以管理大量数据,并具有高插入速率和复杂查询。 通过利用 PostgreSQL 熟悉的 SQL 接口并通过专门的时间序列功能对其进行增强,TimescaleDB 在希望将时间序列功能集成到现有关系数据库中的开发人员中迅速普及。 其混合方法允许用户受益于 PostgreSQL 的灵活性、可靠性和生态系统,同时为时间序列数据提供优化的性能。

该数据库在需要快速摄取数据点并结合对历史时段进行复杂分析查询的环境中尤其有效。 TimescaleDB 具有许多创新功能,例如将数据透明地划分为可管理块的超表和内置的持续聚合。 这些功能可以显着提高查询速度和资源效率。

配置

Mesos

[[inputs.mesos]]
  ## Timeout, in ms.
  timeout = 100

  ## A list of Mesos masters.
  masters = ["http://localhost:5050"]

  ## Master metrics groups to be collected, by default, all enabled.
  master_collections = [
    "resources",
    "master",
    "system",
    "agents",
    "frameworks",
    "framework_offers",
    "tasks",
    "messages",
    "evqueue",
    "registrar",
    "allocator",
  ]

  ## A list of Mesos slaves, default is []
  # slaves = []

  ## Slave metrics groups to be collected, by default, all enabled.
  # slave_collections = [
  #   "resources",
  #   "agent",
  #   "system",
  #   "executors",
  #   "tasks",
  #   "messages",
  # ]

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

TimescaleDB

# Publishes metrics to a TimescaleDB database
[[outputs.postgresql]]
  ## Specify connection address via the standard libpq connection string:
  ##   host=... user=... password=... sslmode=... dbname=...
  ## Or a URL:
  ##   postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
  ## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
  ##
  ## All connection parameters are optional. Environment vars are also supported.
  ## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
  ## All supported vars can be found here:
  ##  https://postgresql.ac.cn/docs/current/libpq-envars.html
  ##
  ## Non-standard parameters:
  ##   pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
  ##   pool_min_conns (default: 0) - Minimum size of connection pool.
  ##   pool_max_conn_lifetime (default: 0s) - Maximum connection age before closing.
  ##   pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
  ##   pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
  # connection = ""

  ## Postgres schema to use.
  # schema = "public"

  ## Store tags as foreign keys in the metrics table. Default is false.
  # tags_as_foreign_keys = false

  ## Suffix to append to table name (measurement name) for the foreign tag table.
  # tag_table_suffix = "_tag"

  ## Deny inserting metrics if the foreign tag can't be inserted.
  # foreign_tag_constraint = false

  ## Store all tags as a JSONB object in a single 'tags' column.
  # tags_as_jsonb = false

  ## Store all fields as a JSONB object in a single 'fields' column.
  # fields_as_jsonb = false

  ## Name of the timestamp column
  ## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
  # timestamp_column_name = "time"

  ## Type of the timestamp column
  ## Currently, "timestamp without time zone" and "timestamp with time zone"
  ## are supported
  # timestamp_column_type = "timestamp without time zone"

  ## Templated statements to execute when creating a new table.
  # create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }})''',
  # ]

  ## Templated statements to execute when adding columns to a table.
  ## Set to an empty list to disable. Points containing tags for which there is
  ## no column will be skipped. Points containing fields for which there is no
  ## column will have the field omitted.
  # add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## Templated statements to execute when creating a new tag table.
  # tag_table_create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
  # ]

  ## Templated statements to execute when adding columns to a tag table.
  ## Set to an empty list to disable. Points containing tags for which there is
  ## no column will be skipped.
  # tag_table_add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## The postgres data type to use for storing unsigned 64-bit integer values
  ## (Postgres does not have a native unsigned 64-bit integer type).
  ## The value can be one of:
  ##   numeric - Uses the PostgreSQL "numeric" data type.
  ##   uint8 - Requires pguint extension (https://github.com/petere/pguint)
  # uint64_type = "numeric"

  ## When using pool_max_conns > 1, and a temporary error occurs, the query is
  ## retried with an incremental backoff. This controls the maximum duration.
  # retry_max_backoff = "15s"

  ## Approximate number of tag IDs to store in in-memory cache (when using
  ## tags_as_foreign_keys). This is an optimization to skip inserting known
  ## tag IDs. Each entry consumes approximately 34 bytes of memory.
  # tag_cache_size = 100000

  ## Cut column names at the given length to not exceed PostgreSQL's
  ## 'identifier length' limit (default: no limit)
  ## (see https://postgresql.ac.cn/docs/current/limits.html)
  ## Be careful to not create duplicate column names!
  # column_name_length_limit = 0

  ## Enable & set the log level for the Postgres driver.
  # log_level = "warn" # trace, debug, info, warn, error, none

输入和输出集成示例

Mesos

  1. 资源利用率监控:使用 Mesos 插件持续监控 Mesos 集群中的 CPU、内存和磁盘使用率。 对于快速扩展的应用程序,跟踪这些指标有助于确保根据工作负载动态分配资源,防止瓶颈并优化性能。

  2. 框架性能分析:集成此插件以衡量 Mesos 上运行的不同框架的性能。 通过比较活动框架及其任务成功率,您可以确定哪些框架提供最佳资源效率或可能需要优化。

  3. 系统健康警报:根据 Mesos 插件收集的指标设置警报,以便在资源利用率超过关键阈值或特定任务失败时通知工程团队。 这允许在发生严重故障之前进行主动干预和维护。

  4. 容量规划:利用收集的指标来分析历史资源使用模式,以协助容量规划。 通过了解峰值负载和资源利用率趋势,团队可以就扩展基础设施和根据需要部署额外资源做出明智的决策。

TimescaleDB

  1. 实时物联网数据摄取:使用该插件实时收集和存储来自数千个物联网设备的传感器数据。 此设置有助于即时分析,帮助组织监控运营效率并快速响应不断变化的条件。

  2. 云应用程序性能监控:利用该插件将来自分布式云应用程序的详细性能指标馈送到 TimescaleDB。 此集成支持实时仪表板和警报,使团队能够快速识别和缓解性能瓶颈。

  3. 历史数据分析和报告:实施一个系统,将长期指标存储在 TimescaleDB 中,以进行全面的历史分析。 这种方法允许企业执行趋势分析、生成详细报告并根据存档的时间序列数据做出数据驱动的决策。

  4. 自适应警报和异常检测:将插件与自动化异常检测工作流程集成。 通过将指标持续流式传输到 TimescaleDB,机器学习模型可以分析数据模式并在发生异常时触发警报,从而提高系统可靠性和主动维护。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成