目录
输入和输出集成概述
此输入插件从 Mesos 收集指标。
此输出插件有助于将 Telegraf 收集的指标直接流式传输到 Splunk,通过 HTTP 事件收集器,实现与 Splunk 强大的分析平台的轻松集成。
集成详情
Mesos
Telegraf 的 Mesos 插件旨在收集和报告来自 Apache Mesos 集群的指标,这对于容器编排和资源管理中的监控和可观察性至关重要。Mesos 以其可扩展性和管理各种工作负载的能力而闻名,它生成有关资源使用、任务、框架和整体系统性能的各种指标。通过使用此插件,用户可以跟踪其 Mesos 集群的健康状况和效率,收集有关资源分配的见解,并确保应用程序及时收到必要的资源。配置允许用户指定相关的 Mesos master 详细信息,以及要收集的所需指标组,使其能够适应不同的部署和监控需求。总的来说,此插件无缝集成在 Telegraf 收集管道中,支持云原生环境的详细可观察性。
Splunk
使用 Telegraf 轻松收集和聚合来自许多不同来源的指标,并将它们发送到 Splunk。此配置利用 HTTP 输出插件和专门的 Splunk 指标序列化器,确保将数据高效摄取到 Splunk 的指标索引中。HEC 是 Splunk 提供的一种高级机制,旨在通过 HTTP 或 HTTPS 可靠地大规模收集数据,为安全性、监控和分析工作负载提供关键功能。Telegraf 与 Splunk HEC 的集成通过利用标准 HTTP 协议、内置身份验证和结构化数据序列化来简化操作,优化指标摄取并实现即时可操作的见解。
配置
Mesos
[[inputs.mesos]]
## Timeout, in ms.
timeout = 100
## A list of Mesos masters.
masters = ["http://localhost:5050"]
## Master metrics groups to be collected, by default, all enabled.
master_collections = [
"resources",
"master",
"system",
"agents",
"frameworks",
"framework_offers",
"tasks",
"messages",
"evqueue",
"registrar",
"allocator",
]
## A list of Mesos slaves, default is []
# slaves = []
## Slave metrics groups to be collected, by default, all enabled.
# slave_collections = [
# "resources",
# "agent",
# "system",
# "executors",
# "tasks",
# "messages",
# ]
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Splunk
[[outputs.http]]
## Splunk HTTP Event Collector endpoint
url = "https://splunk.example.com:8088/services/collector"
## HTTP method to use
method = "POST"
## Splunk authentication token
headers = {"Authorization" = "Splunk YOUR_SPLUNK_HEC_TOKEN"}
## Serializer for formatting metrics specifically for Splunk
data_format = "splunkmetric"
## Optional parameters
# timeout = "5s"
# insecure_skip_verify = false
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
输入和输出集成示例
Mesos
-
资源利用率监控:使用 Mesos 插件持续监控 Mesos 集群中的 CPU、内存和磁盘使用情况。对于快速扩展的应用程序,跟踪这些指标有助于确保根据工作负载动态分配资源,防止瓶颈并优化性能。
-
框架性能分析:集成此插件以衡量 Mesos 上运行的不同框架的性能。通过比较活动框架及其任务成功率,您可以确定哪些框架提供最佳资源效率或可能需要优化。
-
系统健康警报:基于 Mesos 插件收集的指标设置警报,以便在资源利用率超过关键阈值或特定任务失败时通知工程团队。这允许在发生严重故障之前进行主动干预和维护。
-
容量规划:利用收集的指标分析历史资源使用模式,以协助容量规划。通过了解峰值负载和资源利用率趋势,团队可以就扩展基础设施和根据需要部署额外资源做出明智的决策。
Splunk
-
实时安全分析:使用此插件将来自各种应用程序的安全相关指标实时流式传输到 Splunk 中。组织可以通过关联跨系统的数据流立即检测到威胁,从而显著缩短检测和响应时间。
-
多云基础设施监控:集成 Telegraf 以将来自多云环境的指标直接整合到 Splunk 中,从而实现全面的可见性和运营情报。这种统一的监控使团队能够快速检测性能问题并简化云资源管理。
-
动态容量规划:部署此插件以将来自容器编排平台(如 Kubernetes)的资源指标持续推送到 Splunk 中。利用 Splunk 的分析功能,团队可以自动化预测性扩展和资源分配,避免资源瓶颈并最大限度地降低成本。
-
自动化事件响应工作流程:将此插件与 Splunk 的警报系统结合使用,以创建自动化事件响应工作流程。Telegraf 收集的指标触发实时警报和自动化修复脚本,确保快速解决问题并保持高系统可用性。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。