Mesos 和 Cortex 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。 为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑Mesos 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都更有价值。 借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此输入插件从 Mesos 收集指标。

此插件使 Telegraf 能够使用 Prometheus 远程写入协议将指标发送到 Cortex,从而实现无缝摄取到 Cortex 的可扩展、多租户时序存储中。

集成详情

Mesos

Telegraf 的 Mesos 插件旨在从 Apache Mesos 集群收集和报告指标,这对于容器编排和资源管理中的监控和可观测性至关重要。 Mesos 以其可扩展性和管理各种工作负载的能力而闻名,它生成有关资源使用情况、任务、框架和整体系统性能的各种指标。 通过使用此插件,用户可以跟踪其 Mesos 集群的运行状况和效率,深入了解资源分配,并确保应用程序及时获得必要的资源。 配置允许用户指定相关的 Mesos 主节点详细信息以及要收集的所需指标组,使其能够适应不同的部署和监控需求。 总体而言,此插件无缝集成在 Telegraf 收集管道中,为云原生环境提供详细的可观测性。

Cortex

借助 Telegraf 的 HTTP 输出插件和 prometheusremotewrite 数据格式,您可以将指标直接发送到 Cortex,Cortex 是 Prometheus 的水平可扩展的长期存储后端。 Cortex 支持多租户,并使用 Prometheus protobuf 格式接受远程写入请求。 通过使用 Telegraf 作为收集代理,并将 Remote Write 作为传输机制,组织可以将可观测性扩展到 Prometheus 本身不支持的来源(例如 Windows 主机、启用 SNMP 的设备或自定义应用程序指标),同时利用 Cortex 的高可用性和长期保留功能。

配置

Mesos

[[inputs.mesos]]
  ## Timeout, in ms.
  timeout = 100

  ## A list of Mesos masters.
  masters = ["http://localhost:5050"]

  ## Master metrics groups to be collected, by default, all enabled.
  master_collections = [
    "resources",
    "master",
    "system",
    "agents",
    "frameworks",
    "framework_offers",
    "tasks",
    "messages",
    "evqueue",
    "registrar",
    "allocator",
  ]

  ## A list of Mesos slaves, default is []
  # slaves = []

  ## Slave metrics groups to be collected, by default, all enabled.
  # slave_collections = [
  #   "resources",
  #   "agent",
  #   "system",
  #   "executors",
  #   "tasks",
  #   "messages",
  # ]

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Cortex

[[outputs.http]]
  ## Cortex Remote Write endpoint
  url = "http://cortex.example.com/api/v1/push"

  ## Use POST to send data
  method = "POST"

  ## Send metrics using Prometheus remote write format
  data_format = "prometheusremotewrite"

  ## Optional HTTP headers for authentication
  # [outputs.http.headers]
  #   X-Scope-OrgID = "your-tenant-id"
  #   Authorization = "Bearer YOUR_API_TOKEN"

  ## Optional TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

  ## Request timeout
  timeout = "10s"

输入和输出集成示例

Mesos

  1. 资源利用率监控:使用 Mesos 插件持续监控 Mesos 集群中的 CPU、内存和磁盘使用率。 对于快速扩展的应用程序,跟踪这些指标有助于确保根据工作负载动态分配资源,防止瓶颈并优化性能。

  2. 框架性能分析:集成此插件以衡量在 Mesos 上运行的不同框架的性能。 通过比较活动框架及其任务成功率,您可以确定哪些框架提供最佳资源效率或可能需要优化。

  3. 系统健康警报:根据 Mesos 插件收集的指标设置警报,以便在资源利用率超过关键阈值或特定任务失败时通知工程团队。 这允许在发生重大故障之前进行主动干预和维护。

  4. 容量规划:利用收集的指标来分析历史资源使用模式,以协助容量规划。 通过了解峰值负载和资源利用率趋势,团队可以就扩展基础设施和根据需要部署额外资源做出明智的决策。

Cortex

  1. 统一的多租户监控:使用 Telegraf 从不同的团队或环境收集指标,并将它们推送到带有单独 X-Scope-OrgID 标头的 Cortex。 这支持每个租户隔离的数据摄取和查询,非常适合托管服务和平台团队。

  2. 将 Prometheus 覆盖范围扩展到边缘设备:在边缘或物联网设备上部署 Telegraf 以收集系统指标,并将它们发送到集中的 Cortex 集群。 这种方法确保即使在没有本地 Prometheus 抓取器的环境中也能实现一致的可观测性。

  3. 具有联合租户的全局服务可观测性:通过配置 Telegraf 代理将数据推送到区域 Cortex 集群(每个集群都标记有租户标识符)来聚合来自全局基础设施的指标。 Cortex 处理跨区域的重复数据删除和集中访问。

  4. 自定义应用程序遥测管道:通过 Telegraf 的 exechttp 输入插件收集特定于应用程序的遥测数据,并将其转发到 Cortex。 这使 DevOps 团队能够以可扩展、查询高效的格式监控特定于应用程序的 KPI,同时保持指标按租户或服务逻辑分组。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提供意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都更有价值。 借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成