Mesos 和 Azure 数据资源管理器集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Mesos 和 InfluxDB。

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。使用 InfluxDB,这是排名第一的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

输入和输出集成概述

此输入插件从 Mesos 收集指标。

Azure 数据资源管理器插件允许将指标收集与 Azure 数据资源管理器集成,使用户能够高效地分析和查询其遥测数据。借助此插件,用户可以配置摄取设置以满足其需求,并利用 Azure 强大的分析功能。

集成详情

Mesos

Telegraf 的 Mesos 插件旨在从 Apache Mesos 集群收集和报告指标,这对于容器编排和资源管理中的监控和可观察性至关重要。Mesos 以其可扩展性和管理各种工作负载的能力而闻名,它会生成有关资源使用、任务、框架和整体系统性能的各种指标。通过使用此插件,用户可以跟踪其 Mesos 集群的健康状况和效率,深入了解资源分配,并确保应用程序及时获得必要的资源。配置允许用户指定相关的 Mesos master 详细信息以及要收集的所需指标组,使其能够适应不同的部署和监控需求。总的来说,此插件无缝集成在 Telegraf 收集管道中,为云原生环境提供详细的可观察性。

Azure 数据资源管理器

Azure 数据资源管理器插件允许用户将从各种 Telegraf 输入插件收集的指标、日志和时序数据写入 Azure 数据资源管理器、Azure Synapse 和 Fabric 中的实时分析。此集成充当桥梁,使应用程序和服务能够有效地监控其性能指标或日志。Azure 数据资源管理器针对对大量不同数据类型进行分析进行了优化,使其成为云环境中实时分析和监控解决方案的绝佳选择。该插件使用户能够根据其要求配置指标摄取,动态定义表架构,并设置各种摄取方法,同时保留数据库操作所需的角色和权限方面的灵活性。这支持使用云服务的现代应用程序的可扩展且安全的监控设置。

配置

Mesos

[[inputs.mesos]]
  ## Timeout, in ms.
  timeout = 100

  ## A list of Mesos masters.
  masters = ["http://localhost:5050"]

  ## Master metrics groups to be collected, by default, all enabled.
  master_collections = [
    "resources",
    "master",
    "system",
    "agents",
    "frameworks",
    "framework_offers",
    "tasks",
    "messages",
    "evqueue",
    "registrar",
    "allocator",
  ]

  ## A list of Mesos slaves, default is []
  # slaves = []

  ## Slave metrics groups to be collected, by default, all enabled.
  # slave_collections = [
  #   "resources",
  #   "agent",
  #   "system",
  #   "executors",
  #   "tasks",
  #   "messages",
  # ]

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Azure 数据资源管理器

[[outputs.azure_data_explorer]]
  ## The URI property of the Azure Data Explorer resource on Azure
  ## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
  endpoint_url = ""

  ## The Azure Data Explorer database that the metrics will be ingested into.
  ## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
  ## ex: "exampledatabase"
  database = ""

  ## Timeout for Azure Data Explorer operations
  # timeout = "20s"

  ## Type of metrics grouping used when pushing to Azure Data Explorer.
  ## Default is "TablePerMetric" for one table per different metric.
  ## For more information, please check the plugin README.
  # metrics_grouping_type = "TablePerMetric"

  ## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
  # table_name = ""

  ## Creates tables and relevant mapping if set to true(default).
  ## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
  # create_tables = true

  ##  Ingestion method to use.
  ##  Available options are
  ##    - managed  --  streaming ingestion with fallback to batched ingestion or the "queued" method below
  ##    - queued   --  queue up metrics data and process sequentially
  # ingestion_type = "queued"

输入和输出集成示例

Mesos

  1. 资源利用率监控:使用 Mesos 插件持续监控 Mesos 集群中的 CPU、内存和磁盘使用情况。对于快速扩展的应用程序,跟踪这些指标有助于确保根据工作负载动态分配资源,防止瓶颈并优化性能。

  2. 框架性能分析:集成此插件以衡量在 Mesos 上运行的不同框架的性能。通过比较活动框架及其任务成功率,您可以确定哪些框架提供最佳资源效率或可能需要优化。

  3. 系统健康状况警报:根据 Mesos 插件收集的指标设置警报,以便在资源利用率超过关键阈值或特定任务失败时通知工程团队。这允许在发生严重故障之前进行主动干预和维护。

  4. 容量规划:利用收集的指标来分析历史资源使用模式,以协助容量规划。通过了解峰值负载和资源利用率趋势,团队可以就扩展基础设施和根据需要部署其他资源做出明智的决策。

Azure 数据资源管理器

  1. 实时监控仪表板:通过使用此插件将来自各种服务的指标集成到 Azure 数据资源管理器中,组织可以构建反映实时性能指标的综合仪表板。这使团队能够主动响应性能问题并立即优化系统健康状况。

  2. 集中式日志管理:利用 Azure 数据资源管理器来整合来自多个应用程序和服务的日志。通过使用此插件,组织可以简化其日志分析流程,从而更轻松地搜索、过滤和从随时间累积的历史数据中提取见解。

  3. 数据驱动的警报系统:通过根据通过此插件发送的指标配置警报来增强监控功能。组织可以设置阈值并自动化事件响应,从而显着减少停机时间并提高关键操作的可靠性。

  4. 机器学习模型训练:通过利用发送到 Azure 数据资源管理器的数据,组织可以执行大规模分析并准备数据以供馈送到机器学习模型中。此插件支持对数据进行结构化,这些数据随后可用于预测分析,从而增强决策能力。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。使用 InfluxDB,这是排名第一的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成