Memcached 和 AWS Timestream 集成

通过 Telegraf(由 InfluxData 构建的开源数据连接器)提供支持,实现强大的性能和简单的集成。

info

这不是大规模实时查询的推荐配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑Memcached 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会变得更有价值。InfluxDB 是排名第一的时间序列平台,旨在通过 Telegraf 进行扩展。

查看入门方法

输入和输出集成概览

此插件从 Memcached 服务器收集统计数据。

AWS Timestream Telegraf 插件使用户能够将指标直接发送到 Amazon 的 Timestream 服务,该服务专为时间序列数据管理而设计。此插件为身份验证、数据组织和保留设置提供了各种配置选项。

集成详情

Memcached

Telegraf Memcached 插件旨在从 Memcached 服务器收集统计数据,从而允许用户监控其缓存层的性能和运行状况。Memcached 是一种分布式内存缓存系统,通常用于通过减轻数据库负载并将频繁访问的数据存储在内存中以进行快速检索来加速动态 Web 应用程序。此插件收集各种指标,例如连接数、已用字节数以及命中/未命中次数,使管理员能够分析缓存性能、排除问题并优化资源分配。配置支持多个 Memcached 服务器地址,并提供可选的 TLS 设置,从而确保网络中数据传输的灵活性和安全性。通过利用此插件,组织可以深入了解其缓存策略,并提高应用程序的响应能力和效率。

AWS Timestream

此插件旨在高效地将指标写入 Amazon 的 Timestream 服务,Timestream 服务是一个针对物联网和运营应用程序优化的时间序列数据库。借助此插件,Telegraf 可以发送从各种来源收集的数据,并支持灵活的身份验证、数据组织和保留管理配置。它利用凭证链进行身份验证,允许各种方法,例如 Web 身份、承担的角色和共享配置文件。用户可以定义指标在 Timestream 中的组织方式——是使用单个表还是多个表,以及控制磁存储和内存存储的保留期等方面。一个关键特性是它能够处理多指标记录,从而实现高效的数据摄取,并有助于减少多次写入的开销。在错误处理方面,该插件包括用于解决数据写入期间与 AWS 错误相关的常见问题的机制,例如用于节流的重试逻辑以及根据需要创建表的能力。

配置

Memcached

[[inputs.memcached]]
  # An array of address to gather stats about. Specify an ip on hostname
  # with optional port. ie localhost, 10.0.0.1:11211, etc.
  servers = ["localhost:11211"]
  # An array of unix memcached sockets to gather stats about.
  # unix_sockets = ["/var/run/memcached.sock"]

  ## Optional TLS Config
  # enable_tls = false
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## If false, skip chain & host verification
  # insecure_skip_verify = true

AWS Timestream

[[outputs.timestream]]
  ## Amazon Region
  region = "us-east-1"

  ## Amazon Credentials
  ## Credentials are loaded in the following order:
  ## 1) Web identity provider credentials via STS if role_arn and web_identity_token_file are specified
  ## 2) Assumed credentials via STS if role_arn is specified
  ## 3) explicit credentials from 'access_key' and 'secret_key'
  ## 4) shared profile from 'profile'
  ## 5) environment variables
  ## 6) shared credentials file
  ## 7) EC2 Instance Profile
  #access_key = ""
  #secret_key = ""
  #token = ""
  #role_arn = ""
  #web_identity_token_file = ""
  #role_session_name = ""
  #profile = ""
  #shared_credential_file = ""

  ## Endpoint to make request against, the correct endpoint is automatically
  ## determined and this option should only be set if you wish to override the
  ## default.
  ##   ex: endpoint_url = "http://localhost:8000"
  # endpoint_url = ""

  ## Timestream database where the metrics will be inserted.
  ## The database must exist prior to starting Telegraf.
  database_name = "yourDatabaseNameHere"

  ## Specifies if the plugin should describe the Timestream database upon starting
  ## to validate if it has access necessary permissions, connection, etc., as a safety check.
  ## If the describe operation fails, the plugin will not start
  ## and therefore the Telegraf agent will not start.
  describe_database_on_start = false

  ## Specifies how the data is organized in Timestream.
  ## Valid values are: single-table, multi-table.
  ## When mapping_mode is set to single-table, all of the data is stored in a single table.
  ## When mapping_mode is set to multi-table, the data is organized and stored in multiple tables.
  ## The default is multi-table.
  mapping_mode = "multi-table"

  ## Specifies if the plugin should create the table, if the table does not exist.
  create_table_if_not_exists = true

  ## Specifies the Timestream table magnetic store retention period in days.
  ## Check Timestream documentation for more details.
  ## NOTE: This property is valid when create_table_if_not_exists = true.
  create_table_magnetic_store_retention_period_in_days = 365

  ## Specifies the Timestream table memory store retention period in hours.
  ## Check Timestream documentation for more details.
  ## NOTE: This property is valid when create_table_if_not_exists = true.
  create_table_memory_store_retention_period_in_hours = 24

  ## Specifies how the data is written into Timestream.
  ## Valid values are: true, false
  ## When use_multi_measure_records is set to true, all of the tags and fields are stored
  ## as a single row in a Timestream table.
  ## When use_multi_measure_record is set to false, Timestream stores each field in a
  ## separate table row, thereby storing the tags multiple times (once for each field).
  ## The recommended setting is true.
  ## The default is false.
  use_multi_measure_records = "false"

  ## Specifies the measure_name to use when sending multi-measure records.
  ## NOTE: This property is valid when use_multi_measure_records=true and mapping_mode=multi-table
  measure_name_for_multi_measure_records = "telegraf_measure"

  ## Specifies the name of the table to write data into
  ## NOTE: This property is valid when mapping_mode=single-table.
  # single_table_name = ""

  ## Specifies the name of dimension when all of the data is being stored in a single table
  ## and the measurement name is transformed into the dimension value
  ## (see Mapping data from Influx to Timestream for details)
  ## NOTE: This property is valid when mapping_mode=single-table.
  # single_table_dimension_name_for_telegraf_measurement_name = "namespace"

  ## Only valid and optional if create_table_if_not_exists = true
  ## Specifies the Timestream table tags.
  ## Check Timestream documentation for more details
  # create_table_tags = { "foo" = "bar", "environment" = "dev"}

  ## Specify the maximum number of parallel go routines to ingest/write data
  ## If not specified, defaulted to 1 go routines
  max_write_go_routines = 25

  ## Please see README.md to know how line protocol data is mapped to Timestream
  ##

输入和输出集成示例

Memcached

  1. 动态缓存性能监控:使用 Memcached 插件设置性能监控仪表板,该仪表板显示有关缓存命中率、连接计数和内存使用情况的实时统计信息。此设置可以帮助开发人员和系统管理员快速识别性能瓶颈并优化缓存策略以提高应用程序速度。

  2. 缓存性能指标警报:实施一个警报系统,该系统在违反某些阈值(例如缓存命中率降低或拒绝的连接数增加)时触发通知。这种主动方法可以帮助团队在潜在问题影响用户体验之前做出响应,并保持最佳的应用程序性能。

  3. 将缓存指标与业务分析集成:将 Memcached 指标与商业智能工具结合使用,以分析缓存对用户参与度和交易量的影响。通过将缓存性能与关键业务指标相关联,团队可以深入了解缓存策略如何为整体业务目标做出贡献,并改进决策流程。

AWS Timestream

  1. 物联网数据指标:使用 Timestream 插件将来自物联网设备的实时指标发送到 Timestream,从而可以快速分析和可视化传感器数据。通过将设备读数组织成时间序列格式,用户可以跟踪趋势、识别异常情况,并根据设备性能简化运营决策。

  2. 应用程序性能监控:将 Timestream 与应用程序监控工具结合使用,以发送有关服务性能随时间变化的指标。这种集成使工程师能够对应用程序性能进行历史分析,将其与业务指标相关联,并根据随时间推移查看的使用模式优化资源分配。

  3. 自动化数据归档:配置 Timestream 插件以将数据写入 Timestream,同时管理保留期。此设置可以自动化归档策略,确保根据预定义的标准保留旧数据。这对于合规性和历史分析尤其有用,使企业能够以最少的人工干预来维护其数据生命周期。

  4. 多应用程序指标聚合:利用 Timestream 插件将来自多个应用程序的指标聚合到 Timestream 中。通过创建性能指标的统一数据库,组织可以获得跨各种服务的整体见解,从而提高对全系统性能的可见性并促进跨应用程序故障排除。

反馈

感谢您成为我们社区的一份子!如果您有任何一般反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会变得更有价值。InfluxDB 是排名第一的时间序列平台,旨在通过 Telegraf 进行扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成