Memcached 和 Google BigQuery 集成

通过 InfluxData 构建的开源数据连接器 Telegraf 提供支持,实现强大的性能和简单的集成。

info

对于大规模实时查询,这不是推荐的配置。为了实现查询和压缩优化、高速摄取和高可用性,您可能需要考虑Memcached 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件从 Memcached 服务器收集统计数据。

Google BigQuery 插件允许 Telegraf 将指标写入 Google Cloud BigQuery,从而为遥测数据启用强大的数据分析功能。

集成详情

Memcached

Telegraf Memcached 插件旨在从 Memcached 服务器收集统计数据,使用户能够监控其缓存层的性能和健康状况。Memcached 是一种分布式内存缓存系统,通常用于通过减轻数据库负载并将频繁访问的数据存储在内存中以供快速检索来加速动态 Web 应用程序。此插件收集各种指标,例如连接数、已用字节数以及命中/未命中次数,使管理员能够分析缓存性能、排除问题并优化资源分配。该配置支持多个 Memcached 服务器地址,并提供可选的 TLS 设置,确保网络上的灵活性和安全数据传输。通过利用此插件,组织可以深入了解其缓存策略,并提高应用程序的响应速度和效率。

Google BigQuery

Telegraf 的 Google BigQuery 插件实现了与 Google Cloud 的 BigQuery 服务的无缝集成,BigQuery 服务是一个流行的数据仓库和分析平台。此插件有助于将 Telegraf 收集的指标传输到 BigQuery 数据集中,使用户可以更轻松地执行分析并从其遥测数据中生成见解。它需要通过服务帐户或用户凭据进行身份验证,并且旨在处理各种数据类型,确保用户在指标存储在 BigQuery 表中时可以维护指标的完整性和准确性。配置选项允许围绕数据集规范和处理指标进行自定义,包括管理指标名称中的连字符,这对于 BigQuery 流式插入是不支持的。对于利用 BigQuery 的可扩展性和强大的查询功能来分析大量监控数据的组织来说,此插件特别有用。

配置

Memcached

[[inputs.memcached]]
  # An array of address to gather stats about. Specify an ip on hostname
  # with optional port. ie localhost, 10.0.0.1:11211, etc.
  servers = ["localhost:11211"]
  # An array of unix memcached sockets to gather stats about.
  # unix_sockets = ["/var/run/memcached.sock"]

  ## Optional TLS Config
  # enable_tls = false
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## If false, skip chain & host verification
  # insecure_skip_verify = true

Google BigQuery

# Configuration for Google Cloud BigQuery to send entries
[[outputs.bigquery]]
  ## Credentials File
  credentials_file = "/path/to/service/account/key.json"

  ## Google Cloud Platform Project
  # project = ""

  ## The namespace for the metric descriptor
  dataset = "telegraf"

  ## Timeout for BigQuery operations.
  # timeout = "5s"

  ## Character to replace hyphens on Metric name
  # replace_hyphen_to = "_"

  ## Write all metrics in a single compact table
  # compact_table = ""
  

输入和输出集成示例

Memcached

  1. 动态缓存性能监控:使用 Memcached 插件设置性能监控仪表板,该仪表板显示有关缓存命中率、连接计数和内存使用情况的实时统计信息。此设置可以帮助开发人员和系统管理员快速识别性能瓶颈并优化缓存策略,以提高应用程序速度。

  2. 缓存性能指标警报:实施警报系统,以便在违反某些阈值时触发通知,例如缓存命中率降低或拒绝连接数增加。这种主动方法可以帮助团队在潜在问题影响用户体验之前做出响应,并保持最佳应用程序性能。

  3. 将缓存指标与业务分析集成:将 Memcached 指标与商业智能工具结合使用,以分析缓存对用户参与度和交易量的影响。通过将缓存性能与关键业务指标相关联,团队可以深入了解缓存策略如何为整体业务目标做出贡献,并改进决策流程。

Google BigQuery

  1. 实时分析仪表板:利用 Google BigQuery 插件将实时指标馈送到 Google Cloud 上托管的自定义分析仪表板中。此设置将允许团队实时可视化性能数据,从而深入了解系统健康状况和使用模式。通过使用 BigQuery 的查询功能,用户可以轻松创建量身定制的报告和仪表板来满足其特定需求,从而增强决策流程。

  2. 成本管理和优化分析:利用该插件自动将来自各种服务的成本相关指标发送到 BigQuery。分析此数据可以帮助企业识别不必要的费用并优化资源使用。通过在 BigQuery 中执行聚合和转换查询,组织可以创建准确的预测并有效地管理其云支出。

  3. 监控数据的跨团队协作:使组织内不同的团队能够使用 BigQuery 共享其监控数据。借助此 Telegraf 插件,团队可以将他们的指标推送到中央 BigQuery 实例,从而促进协作。这种数据共享方法鼓励最佳实践和跨职能意识,从而共同改进系统性能和可靠性。

  4. 用于容量规划的历史分析:通过使用 BigQuery 插件,公司可以收集和存储对容量规划至关重要的历史指标数据。分析随时间变化的趋势可以帮助预测系统需求并主动扩展基础设施。组织可以创建时间序列分析并识别模式,从而为其长期战略决策提供信息。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 进行检查点功能的可靠消息处理。

查看集成