LDAP 和 Splunk 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 LDAP 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

LDAP 插件从 LDAP 服务器(包括 OpenLDAP 和 389 Directory Server)收集监控指标。此插件对于跟踪 LDAP 服务的性能和健康状况至关重要,使管理员能够深入了解其目录操作。

此输出插件有助于将 Telegraf 收集的指标通过 HTTP Event Collector 直接流式传输到 Splunk 中,从而轻松与 Splunk 强大的分析平台集成。

集成详细信息

LDAP

此插件从 LDAP 服务器的监控后端收集指标,特别是来自 cn=Monitor 条目的指标。它支持两种著名的 LDAP 实现:OpenLDAP 和 389 Directory Server (389ds)。LDAP 插件专注于收集各种操作指标,使管理员能够实时监控性能、连接状态和服务器健康状况,这对于维护稳健的目录服务至关重要。通过允许自定义连接参数和安全配置(例如 TLS 支持),该插件确保符合安全性和性能的最佳实践。收集的指标有助于识别趋势、优化服务器配置以及与利益相关者强制执行服务级别协议。

Splunk

使用 Telegraf 轻松地从许多不同的来源收集和聚合指标,并将它们发送到 Splunk。通过利用 HTTP 输出插件和专门的 Splunk 指标序列化器,此配置可确保高效地将数据摄取到 Splunk 的指标索引中。HEC 是 Splunk 提供的一种高级机制,旨在通过 HTTP 或 HTTPS 可靠地大规模收集数据,为安全性、监控和分析工作负载提供关键功能。Telegraf 与 Splunk HEC 的集成通过利用标准 HTTP 协议、内置身份验证和结构化数据序列化来简化操作,从而优化指标摄取并实现即时可操作的见解。

配置

LDAP

[[inputs.ldap]]
  ## Server to monitor
  ## The scheme determines the mode to use for connection with
  ##    ldap://...      -- unencrypted (non-TLS) connection
  ##    ldaps://...     -- TLS connection
  ##    starttls://...  --  StartTLS connection
  ## If no port is given, the default ports, 389 for ldap and starttls and
  ## 636 for ldaps, are used.
  server = "ldap://localhost"

  ## Server dialect, can be "openldap" or "389ds"
  # dialect = "openldap"

  # DN and password to bind with
  ## If bind_dn is empty an anonymous bind is performed.
  bind_dn = ""
  bind_password = ""

  ## Reverse the field names constructed from the monitoring DN
  # reverse_field_names = false

  ## Optional TLS Config
  ## Set to true/false to enforce TLS being enabled/disabled. If not set,
  ## enable TLS only if any of the other options are specified.
  # tls_enable =
  ## Trusted root certificates for server
  # tls_ca = "/path/to/cafile"
  ## Used for TLS client certificate authentication
  # tls_cert = "/path/to/certfile"
  ## Used for TLS client certificate authentication
  # tls_key = "/path/to/keyfile"
  ## Password for the key file if it is encrypted
  # tls_key_pwd = ""
  ## Send the specified TLS server name via SNI
  # tls_server_name = "kubernetes.example.com"
  ## Minimal TLS version to accept by the client
  # tls_min_version = "TLS12"
  ## List of ciphers to accept, by default all secure ciphers will be accepted
  ## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
  ## Use "all", "secure" and "insecure" to add all support ciphers, secure
  ## suites or insecure suites respectively.
  # tls_cipher_suites = ["secure"]
  ## Renegotiation method, "never", "once" or "freely"
  # tls_renegotiation_method = "never"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Splunk

[[outputs.http]]
  ## Splunk HTTP Event Collector endpoint
  url = "https://splunk.example.com:8088/services/collector"

  ## HTTP method to use
  method = "POST"

  ## Splunk authentication token
  headers = {"Authorization" = "Splunk YOUR_SPLUNK_HEC_TOKEN"}

  ## Serializer for formatting metrics specifically for Splunk
  data_format = "splunkmetric"

  ## Optional parameters
  # timeout = "5s"
  # insecure_skip_verify = false
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"

输入和输出集成示例

LDAP

  1. 监控目录性能:使用 LDAP Telegraf 插件持续跟踪和分析已完成的操作数、已建立的连接数和服务器响应时间。通过可视化随时间推移的数据,管理员可以识别目录服务中的性能瓶颈,从而实现主动优化。

  2. 安全事件警报:将插件与警报系统集成,以便在某些指标(例如 bind_security_errorsunauth_binds)超过预定义阈值时通知管理员。此设置可以通过提供对潜在未经授权的访问尝试的实时见解来增强安全监控。

  3. 容量规划:利用 LDAP 插件收集的指标来执行容量规划。分析连接趋势、正在使用的最大线程数和操作统计信息,以预测未来的资源需求,确保 LDAP 服务器可以处理预期的峰值负载而不会降低性能。

  4. 合规性和审计:使用通过此插件获得的操作指标来协助合规性审计。通过定期检查 anonymous_bindssecurity_errors 等指标,组织可以确保其目录服务符合安全策略和法规要求。

Splunk

  1. 实时安全分析:利用此插件将来自各种应用程序的安全相关指标实时流式传输到 Splunk 中。组织可以通过关联跨系统的数据流立即检测到威胁,从而显着缩短检测和响应时间。

  2. 多云基础设施监控:集成 Telegraf 以将来自多云环境的指标直接整合到 Splunk 中,从而实现全面的可见性和运营智能。这种统一的监控使团队能够快速检测性能问题并简化云资源管理。

  3. 动态容量规划:部署插件以将来自容器编排平台(如 Kubernetes)的资源指标持续推送到 Splunk 中。通过利用 Splunk 的分析功能,团队可以自动化预测性扩展和资源分配,避免资源瓶颈并最大限度地降低成本。

  4. 自动化事件响应工作流程:将此插件与 Splunk 的警报系统结合使用,以创建自动化事件响应工作流程。Telegraf 收集的指标会触发实时警报和自动化修复脚本,从而确保快速解决问题并保持高系统可用性。

反馈

感谢您成为我们社区的一份子!如果您有任何一般反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成