Kubernetes 和 Elasticsearch 集成

通过易于集成的强大性能,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Kubernetes 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。借助 InfluxDB,第一的时间序列平台旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件通过与 Kubelet API 通信来捕获 Kubernetes Pod 和容器的指标。

Telegraf Elasticsearch 插件无缝地将指标发送到 Elasticsearch 服务器。 该插件处理模板创建和动态索引管理,并支持各种 Elasticsearch 特有功能,以确保数据格式正确,以便存储和检索。

集成详情

Kubernetes

Kubernetes 输入插件与 Kubelet API 接口,以收集在单个主机上运行的 Pod 和容器的指标,理想情况下,作为 Kubernetes 安装中的守护程序集的一部分。 通过在集群中的每个节点上运行,它可以从本地运行的 kubelet 收集指标,确保数据反映环境的实时状态。 Kubernetes 作为一个快速发展的项目,经常进行更新,此插件遵守主要云提供商支持的版本,在有限的时间跨度内保持跨多个版本的兼容性。 充分考虑了可能的高序列基数,这可能会给数据库带来负担; 因此,建议用户实施过滤技术和保留策略来有效管理此负载。 配置选项提供了插件行为的灵活自定义,以无缝集成到不同的设置中,从而增强其在监控 Kubernetes 环境中的实用性。

Elasticsearch

此插件将指标写入 Elasticsearch,这是一个分布式 RESTful 搜索和分析引擎,能够近乎实时地存储大量数据。 它旨在处理 Elasticsearch 5.x 到 7.x 版本,并利用其动态模板功能来正确管理数据类型映射。 该插件支持高级功能,例如模板管理、动态索引命名以及与 OpenSearch 的集成。 它还允许配置 Elasticsearch 节点的身份验证和运行状况监控。

配置

Kubernetes

[[inputs.kubernetes]]
  ## URL for the kubelet, if empty read metrics from all nodes in the cluster
  url = "http://127.0.0.1:10255"

  ## Use bearer token for authorization. ('bearer_token' takes priority)
  ## If both of these are empty, we'll use the default serviceaccount:
  ## at: /var/run/secrets/kubernetes.io/serviceaccount/token
  ##
  ## To re-read the token at each interval, please use a file with the
  ## bearer_token option. If given a string, Telegraf will always use that
  ## token.
  # bearer_token = "/var/run/secrets/kubernetes.io/serviceaccount/token"
  ## OR
  # bearer_token_string = "abc_123"

  ## Kubernetes Node Metric Name
  ## The default Kubernetes node metric name (i.e. kubernetes_node) is the same
  ## for the kubernetes and kube_inventory plugins. To avoid conflicts, set this
  ## option to a different value.
  # node_metric_name = "kubernetes_node"

  ## Pod labels to be added as tags.  An empty array for both include and
  ## exclude will include all labels.
  # label_include = []
  # label_exclude = ["*"]

  ## Set response_timeout (default 5 seconds)
  # response_timeout = "5s"

  ## Optional TLS Config
  # tls_ca = /path/to/cafile
  # tls_cert = /path/to/certfile
  # tls_key = /path/to/keyfile
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Elasticsearch


[[outputs.elasticsearch]]
  ## The full HTTP endpoint URL for your Elasticsearch instance
  ## Multiple urls can be specified as part of the same cluster,
  ## this means that only ONE of the urls will be written to each interval
  urls = [ "http://node1.es.example.com:9200" ] # required.
  ## Elasticsearch client timeout, defaults to "5s" if not set.
  timeout = "5s"
  ## Set to true to ask Elasticsearch a list of all cluster nodes,
  ## thus it is not necessary to list all nodes in the urls config option
  enable_sniffer = false
  ## Set to true to enable gzip compression
  enable_gzip = false
  ## Set the interval to check if the Elasticsearch nodes are available
  ## Setting to "0s" will disable the health check (not recommended in production)
  health_check_interval = "10s"
  ## Set the timeout for periodic health checks.
  # health_check_timeout = "1s"
  ## HTTP basic authentication details.
  ## HTTP basic authentication details
  # username = "telegraf"
  # password = "mypassword"
  ## HTTP bearer token authentication details
  # auth_bearer_token = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9"

  ## Index Config
  ## The target index for metrics (Elasticsearch will create if it not exists).
  ## You can use the date specifiers below to create indexes per time frame.
  ## The metric timestamp will be used to decide the destination index name
  # %Y - year (2016)
  # %y - last two digits of year (00..99)
  # %m - month (01..12)
  # %d - day of month (e.g., 01)
  # %H - hour (00..23)
  # %V - week of the year (ISO week) (01..53)
  ## Additionally, you can specify a tag name using the notation {{tag_name}}
  ## which will be used as part of the index name. If the tag does not exist,
  ## the default tag value will be used.
  # index_name = "telegraf-{{host}}-%Y.%m.%d"
  # default_tag_value = "none"
  index_name = "telegraf-%Y.%m.%d" # required.

  ## Optional Index Config
  ## Set to true if Telegraf should use the "create" OpType while indexing
  # use_optype_create = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Template Config
  ## Set to true if you want telegraf to manage its index template.
  ## If enabled it will create a recommended index template for telegraf indexes
  manage_template = true
  ## The template name used for telegraf indexes
  template_name = "telegraf"
  ## Set to true if you want telegraf to overwrite an existing template
  overwrite_template = false
  ## If set to true a unique ID hash will be sent as sha256(concat(timestamp,measurement,series-hash)) string
  ## it will enable data resend and update metric points avoiding duplicated metrics with different id's
  force_document_id = false

  ## Specifies the handling of NaN and Inf values.
  ## This option can have the following values:
  ##    none    -- do not modify field-values (default); will produce an error if NaNs or infs are encountered
  ##    drop    -- drop fields containing NaNs or infs
  ##    replace -- replace with the value in "float_replacement_value" (default: 0.0)
  ##               NaNs and inf will be replaced with the given number, -inf with the negative of that number
  # float_handling = "none"
  # float_replacement_value = 0.0

  ## Pipeline Config
  ## To use a ingest pipeline, set this to the name of the pipeline you want to use.
  # use_pipeline = "my_pipeline"
  ## Additionally, you can specify a tag name using the notation {{tag_name}}
  ## which will be used as part of the pipeline name. If the tag does not exist,
  ## the default pipeline will be used as the pipeline. If no default pipeline is set,
  ## no pipeline is used for the metric.
  # use_pipeline = "{{es_pipeline}}"
  # default_pipeline = "my_pipeline"
  #
  # Custom HTTP headers
  # To pass custom HTTP headers please define it in a given below section
  # [outputs.elasticsearch.headers]
  #    "X-Custom-Header" = "custom-value"

  ## Template Index Settings
  ## Overrides the template settings.index section with any provided options.
  ## Defaults provided here in the config
  # template_index_settings = {
  #   refresh_interval = "10s",
  #   mapping.total_fields.limit = 5000,
  #   auto_expand_replicas = "0-1",
  #   codec = "best_compression"
  # }

输入和输出集成示例

Kubernetes

  1. 动态资源分配监控:通过利用 Kubernetes 插件,团队可以为各种 Pod 和容器的资源使用模式设置警报。 这种主动监控方法能够根据特定阈值自动扩展资源,从而帮助优化性能,同时最大限度地减少高峰使用期间的成本。

  2. 多租户资源隔离分析:使用 Kubernetes 的组织可以利用此插件来跟踪每个命名空间的资源消耗。 在多租户场景中,了解不同团队之间的资源分配和使用情况对于确保公平访问和性能保证至关重要,从而带来更好的资源管理策略。

  3. 实时运行状况仪表板:将 Kubernetes 插件捕获的数据集成到 Grafana 等可视化工具中,以创建实时仪表板。 这些仪表板提供对 Kubernetes 环境的整体运行状况和性能的洞察,使团队能够快速识别和纠正跨集群、Pod 和容器的问题。

  4. 自动化事件响应工作流程:通过将 Kubernetes 插件与警报管理系统相结合,团队可以根据实时指标自动化事件响应程序。 如果 Pod 的资源使用量超过预定义的限制,自动化工作流程可以触发补救措施,例如重新启动 Pod 或重新分配资源,所有这些都有助于提高系统弹性。

Elasticsearch

  1. 基于时间的索引:使用此插件将指标存储在 Elasticsearch 中,以根据收集的时间对每个指标进行索引。 例如,CPU 指标可以存储在名为 telegraf-2023.01.01 的每日索引中,从而实现轻松的基于时间的查询和保留策略。

  2. 动态模板管理:利用模板管理功能自动创建针对您的指标定制的自定义模板。 这使您可以定义如何索引和分析不同的字段,而无需手动配置 Elasticsearch,从而确保用于查询的最佳数据结构。

  3. OpenSearch 兼容性:如果您正在使用 AWS OpenSearch,则可以通过激活兼容模式来配置此插件以无缝工作,从而确保您现有的 Elasticsearch 客户端保持功能正常并与较新的集群设置兼容。

反馈

感谢您成为我们社区的一份子!如果您有任何一般反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。借助 InfluxDB,第一的时间序列平台旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成