目录
输入和输出集成概述
此插件通过与 Kubelet API 通信来捕获 Kubernetes Pod 和容器的指标。
Datadog Telegraf 插件支持向 Datadog Metrics API 提交指标,通过可靠的指标摄取流程促进高效的监控和数据分析。
集成详情
Kubernetes
Kubernetes 输入插件与 Kubelet API 接口,以收集在单个主机上运行的 Pod 和容器的指标,理想情况下,作为 Kubernetes 安装中的 DaemonSet 的一部分。通过在集群内的每个节点上运行,它从本地运行的 kubelet 收集指标,确保数据反映环境的实时状态。作为一个快速发展的项目,Kubernetes 经常进行更新,此插件遵循主要云提供商支持的版本,在有限的时间跨度内保持跨多个版本的兼容性。我们非常重视可能出现的高基数序列,这可能会给数据库带来负担;因此,建议用户实施过滤技术和保留策略来有效地管理此负载。配置选项提供了插件行为的灵活自定义,以无缝集成到不同的设置中,从而增强其在监控 Kubernetes 环境中的实用性。
Datadog
此插件写入 Datadog Metrics API,使用户能够发送指标以进行监控和性能分析。通过使用 Datadog API 密钥,用户可以将插件配置为与 Datadog 的 v1 API 建立连接。该插件支持各种配置选项,包括连接超时、HTTP 代理设置和数据压缩方法,确保适应不同的部署环境。将计数指标转换为速率的能力增强了 Telegraf 与 Datadog 代理的集成,这对于依赖实时性能指标的应用程序尤其有利。
配置
Kubernetes
[[inputs.kubernetes]]
## URL for the kubelet, if empty read metrics from all nodes in the cluster
url = "http://127.0.0.1:10255"
## Use bearer token for authorization. ('bearer_token' takes priority)
## If both of these are empty, we'll use the default serviceaccount:
## at: /var/run/secrets/kubernetes.io/serviceaccount/token
##
## To re-read the token at each interval, please use a file with the
## bearer_token option. If given a string, Telegraf will always use that
## token.
# bearer_token = "/var/run/secrets/kubernetes.io/serviceaccount/token"
## OR
# bearer_token_string = "abc_123"
## Kubernetes Node Metric Name
## The default Kubernetes node metric name (i.e. kubernetes_node) is the same
## for the kubernetes and kube_inventory plugins. To avoid conflicts, set this
## option to a different value.
# node_metric_name = "kubernetes_node"
## Pod labels to be added as tags. An empty array for both include and
## exclude will include all labels.
# label_include = []
# label_exclude = ["*"]
## Set response_timeout (default 5 seconds)
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Datadog
[[outputs.datadog]]
## Datadog API key
apikey = "my-secret-key"
## Connection timeout.
# timeout = "5s"
## Write URL override; useful for debugging.
## This plugin only supports the v1 API currently due to the authentication
## method used.
# url = "https://app.datadoghq.com/api/v1/series"
## Set http_proxy
# use_system_proxy = false
# http_proxy_url = "http://localhost:8888"
## Override the default (none) compression used to send data.
## Supports: "zlib", "none"
# compression = "none"
## When non-zero, converts count metrics submitted by inputs.statsd
## into rate, while dividing the metric value by this number.
## Note that in order for metrics to be submitted simultaenously alongside
## a Datadog agent, rate_interval has to match the interval used by the
## agent - which defaults to 10s
# rate_interval = 0s
输入和输出集成示例
Kubernetes
-
动态资源分配监控:通过利用 Kubernetes 插件,团队可以为跨各种 Pod 和容器的资源使用模式设置警报。这种主动监控方法能够根据特定阈值自动扩展资源,从而帮助优化性能,同时最大限度地降低高峰使用期间的成本。
-
多租户资源隔离分析:使用 Kubernetes 的组织可以利用此插件来跟踪每个命名空间的资源消耗。在多租户场景中,了解不同团队之间的资源分配和使用情况对于确保公平访问和性能保证至关重要,从而带来更好的资源管理策略。
-
实时健康状况仪表板:将 Kubernetes 插件捕获的数据集成到 Grafana 等可视化工具中,以创建实时仪表板。这些仪表板提供对 Kubernetes 环境的整体健康状况和性能的深入了解,使团队能够快速识别和纠正跨集群、Pod 和容器的问题。
-
自动化事件响应工作流程:通过将 Kubernetes 插件与警报管理系统相结合,团队可以基于实时指标自动化事件响应程序。如果 Pod 的资源使用量超过预定义的限制,则自动化工作流程可以触发补救措施,例如重新启动 Pod 或重新分配资源,所有这些都有助于提高系统弹性。
Datadog
-
实时基础设施监控:使用 Datadog 插件通过将 CPU 使用率和内存统计信息直接发送到 Datadog 来实时监控服务器指标。此集成允许 IT 团队在集中式仪表板中可视化和分析系统性能指标,从而能够主动响应任何新出现的问题,例如资源瓶颈或服务器过载。
-
应用程序性能跟踪:利用此插件向 Datadog 提交特定于应用程序的指标,例如请求计数和错误率。通过与应用程序监控工具集成,团队可以将基础设施指标与应用程序性能相关联,从而提供使他们能够优化代码性能并改善用户体验的见解。
-
指标异常检测:配置 Datadog 插件以发送指标,这些指标可以根据 Datadog 的机器学习功能检测到的异常模式触发警报和通知。这种主动监控有助于团队在客户受到影响之前快速响应潜在的中断或性能下降。
-
与云服务集成:通过利用 Datadog 插件从云资源发送指标,IT 团队可以深入了解云应用程序性能。监控延迟和错误率等指标有助于确保满足服务级别协议 (SLA),还有助于优化跨云环境的资源分配。
反馈
感谢您成为我们社区的一份子!如果您有任何一般反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。