Kinesis 和 SQLite 集成

强大性能,轻松集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

这不是大规模实时查询的推荐配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Kinesis 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。InfluxDB 是排名第一的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

输入和输出集成概述

Kinesis 插件使您能够从 Kinesis 数据流中读取数据,支持各种数据格式和配置。

Telegraf 的 SQL 输出插件通过为每种指标类型动态创建表,将指标存储在 SQL 数据库中。当配置为 SQLite 时,它使用基于文件的 DSN 和为轻量级嵌入式数据库使用量身定制的最小 SQL 模式。

集成详情

Kinesis

Kinesis Telegraf 插件旨在从 Amazon Kinesis 数据流中读取数据,使用户能够实时收集指标。作为服务输入插件,它通过监听传入数据而不是定期轮询来运行。配置指定了各种选项,包括 AWS 区域、流名称、身份验证凭据和数据格式。它支持跟踪未送达的消息以防止数据丢失,用户可以利用 DynamoDB 来维护上次处理记录的检查点。此插件对于需要可靠且可扩展的流处理以及其他监控需求的应用程序特别有用。

SQLite

SQL 输出插件使用动态模式将 Telegraf 指标写入 SQL 数据库,其中每种指标类型对应一个表。对于 SQLite,该插件使用 modernc.org/sqlite 驱动程序,并且需要文件 URI 格式的 DSN(例如,‘file:/path/to/telegraf.db?cache=shared’)。此配置利用标准 ANSI SQL 进行表创建和数据插入,确保与 SQLite 的功能兼容。

配置

Kinesis


# Configuration for the AWS Kinesis input.
[[inputs.kinesis_consumer]]
  ## Amazon REGION of kinesis endpoint.
  region = "ap-southeast-2"

  ## Amazon Credentials
  ## Credentials are loaded in the following order
  ## 1) Web identity provider credentials via STS if role_arn and web_identity_token_file are specified
  ## 2) Assumed credentials via STS if role_arn is specified
  ## 3) explicit credentials from 'access_key' and 'secret_key'
  ## 4) shared profile from 'profile'
  ## 5) environment variables
  ## 6) shared credentials file
  ## 7) EC2 Instance Profile
  # access_key = ""
  # secret_key = ""
  # token = ""
  # role_arn = ""
  # web_identity_token_file = ""
  # role_session_name = ""
  # profile = ""
  # shared_credential_file = ""

  ## Endpoint to make request against, the correct endpoint is automatically
  ## determined and this option should only be set if you wish to override the
  ## default.
  ##   ex: endpoint_url = "http://localhost:8000"
  # endpoint_url = ""

  ## Kinesis StreamName must exist prior to starting telegraf.
  streamname = "StreamName"

  ## Shard iterator type (only 'TRIM_HORIZON' and 'LATEST' currently supported)
  # shard_iterator_type = "TRIM_HORIZON"

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

  ##
  ## The content encoding of the data from kinesis
  ## If you are processing a cloudwatch logs kinesis stream then set this to "gzip"
  ## as AWS compresses cloudwatch log data before it is sent to kinesis (aws
  ## also base64 encodes the zip byte data before pushing to the stream.  The base64 decoding
  ## is done automatically by the golang sdk, as data is read from kinesis)
  ##
  # content_encoding = "identity"

  ## Optional
  ## Configuration for a dynamodb checkpoint
  [inputs.kinesis_consumer.checkpoint_dynamodb]
    ## unique name for this consumer
    app_name = "default"
    table_name = "default"

SQLite

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "sqlite"

  ## Data source name
  ## For SQLite, the DSN is a filename or URL with the scheme "file:".
  ## Example: "file:/path/to/telegraf.db?cache=shared"
  data_source_name = "file:/path/to/telegraf.db?cache=shared"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## The values on the left are the data types Telegraf has and the values on the right are the SQL types used when writing to SQLite.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

输入和输出集成示例

Kinesis

  1. 使用 Kinesis 进行实时数据处理:此用例涉及将 Kinesis 插件与监控仪表板集成,以实时分析传入的数据指标。例如,应用程序可以从多个服务消耗日志并以可视方式呈现它们,从而使运营团队能够快速识别趋势并对出现的异常做出反应。

  2. 无服务器日志聚合:在无服务器架构中使用此插件,其中 Kinesis 流聚合来自各种微服务的日志。该插件可以创建指标,帮助检测系统中的问题,通过第三方集成自动化警报流程,使团队能够最大限度地减少停机时间并提高可靠性。

  3. 基于流指标的动态扩展:实施一种解决方案,其中 Kinesis 插件消耗的流指标可用于动态调整资源。例如,如果处理的记录数激增,则可以触发相应的扩展操作来处理增加的负载,从而确保最佳的资源分配和性能。

  4. 使用检查点的到 S3 的数据管道:创建一个强大的数据管道,其中 Kinesis 流数据通过 Telegraf Kinesis 插件处理,检查点存储在 DynamoDB 中。这种方法可以确保数据一致性和可靠性,因为它管理已处理数据的状态,从而实现与下游数据湖或存储解决方案的无缝集成。

SQLite

  1. 本地监控存储:配置插件以将指标写入本地 SQLite 数据库文件。这非常适合不需要设置全规模数据库服务器的轻量级部署。
  2. 嵌入式应用程序:使用 SQLite 作为嵌入在边缘设备中的应用程序的后端,受益于其基于文件的架构和最小的资源需求。
  3. 快速设置进行测试:利用 SQLite 的易用性,快速设置 Telegraf 指标收集的测试环境,而无需外部数据库服务。
  4. 自定义模式管理:如果您需要特定的列类型或索引,请调整表创建模板以预定义您的模式,从而确保与您的应用程序需求兼容。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。InfluxDB 是排名第一的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成