Kinesis 和 Datadog 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Kinesis 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。使用 InfluxDB,这是基于 Telegraf 构建的排名第一的时间序列平台,可进行扩展。

查看入门方法

输入和输出集成概述

Kinesis 插件使您能够从 Kinesis 数据流中读取数据,支持各种数据格式和配置。

Datadog Telegraf 插件支持将指标提交到 Datadog Metrics API,通过可靠的指标摄取流程,促进高效的监控和数据分析。

集成详情

Kinesis

Kinesis Telegraf 插件旨在从 Amazon Kinesis 数据流中读取数据,使用户能够实时收集指标。作为服务输入插件,它通过监听传入数据而不是定期轮询来运行。配置指定了各种选项,包括 AWS 区域、流名称、身份验证凭据和数据格式。它支持跟踪未传递的消息以防止数据丢失,用户可以利用 DynamoDB 来维护上次处理记录的检查点。此插件对于需要可靠且可扩展的流处理以及其他监控需求的应用程序特别有用。

Datadog

此插件写入 Datadog Metrics API,使用户能够发送指标以进行监控和性能分析。通过利用 Datadog API 密钥,用户可以将插件配置为与 Datadog 的 v1 API 建立连接。该插件支持各种配置选项,包括连接超时、HTTP 代理设置和数据压缩方法,确保适应不同的部署环境。将计数指标转换为速率的能力增强了 Telegraf 与 Datadog 代理的集成,这对于依赖实时性能指标的应用程序尤其有利。

配置

Kinesis


# Configuration for the AWS Kinesis input.
[[inputs.kinesis_consumer]]
  ## Amazon REGION of kinesis endpoint.
  region = "ap-southeast-2"

  ## Amazon Credentials
  ## Credentials are loaded in the following order
  ## 1) Web identity provider credentials via STS if role_arn and web_identity_token_file are specified
  ## 2) Assumed credentials via STS if role_arn is specified
  ## 3) explicit credentials from 'access_key' and 'secret_key'
  ## 4) shared profile from 'profile'
  ## 5) environment variables
  ## 6) shared credentials file
  ## 7) EC2 Instance Profile
  # access_key = ""
  # secret_key = ""
  # token = ""
  # role_arn = ""
  # web_identity_token_file = ""
  # role_session_name = ""
  # profile = ""
  # shared_credential_file = ""

  ## Endpoint to make request against, the correct endpoint is automatically
  ## determined and this option should only be set if you wish to override the
  ## default.
  ##   ex: endpoint_url = "http://localhost:8000"
  # endpoint_url = ""

  ## Kinesis StreamName must exist prior to starting telegraf.
  streamname = "StreamName"

  ## Shard iterator type (only 'TRIM_HORIZON' and 'LATEST' currently supported)
  # shard_iterator_type = "TRIM_HORIZON"

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

  ##
  ## The content encoding of the data from kinesis
  ## If you are processing a cloudwatch logs kinesis stream then set this to "gzip"
  ## as AWS compresses cloudwatch log data before it is sent to kinesis (aws
  ## also base64 encodes the zip byte data before pushing to the stream.  The base64 decoding
  ## is done automatically by the golang sdk, as data is read from kinesis)
  ##
  # content_encoding = "identity"

  ## Optional
  ## Configuration for a dynamodb checkpoint
  [inputs.kinesis_consumer.checkpoint_dynamodb]
    ## unique name for this consumer
    app_name = "default"
    table_name = "default"

Datadog

[[outputs.datadog]]
  ## Datadog API key
  apikey = "my-secret-key"

  ## Connection timeout.
  # timeout = "5s"

  ## Write URL override; useful for debugging.
  ## This plugin only supports the v1 API currently due to the authentication
  ## method used.
  # url = "https://app.datadoghq.com/api/v1/series"

  ## Set http_proxy
  # use_system_proxy = false
  # http_proxy_url = "http://localhost:8888"

  ## Override the default (none) compression used to send data.
  ## Supports: "zlib", "none"
  # compression = "none"

  ## When non-zero, converts count metrics submitted by inputs.statsd
  ## into rate, while dividing the metric value by this number.
  ## Note that in order for metrics to be submitted simultaenously alongside
  ## a Datadog agent, rate_interval has to match the interval used by the
  ## agent - which defaults to 10s
  # rate_interval = 0s

输入和输出集成示例

Kinesis

  1. 使用 Kinesis 进行实时数据处理:此用例涉及将 Kinesis 插件与监控仪表板集成,以实时分析传入的数据指标。例如,应用程序可以从多个服务使用日志并以可视化方式呈现它们,使运营团队能够快速识别趋势并对异常情况做出反应。

  2. 无服务器日志聚合:在无服务器架构中使用此插件,其中 Kinesis 流聚合来自各种微服务的日志。该插件可以创建指标,帮助检测系统中的问题,通过第三方集成自动执行警报流程,使团队能够最大限度地减少停机时间并提高可靠性。

  3. 基于流指标的动态扩展:实施一种解决方案,其中 Kinesis 插件使用的流指标可用于动态调整资源。例如,如果处理的记录数激增,则可以触发相应的扩展操作来处理增加的负载,从而确保最佳的资源分配和性能。

  4. 使用检查点到 S3 的数据管道:创建一个强大的数据管道,其中 Kinesis 流数据通过 Telegraf Kinesis 插件处理,检查点存储在 DynamoDB 中。这种方法可以确保数据一致性和可靠性,因为它管理已处理数据的状态,从而实现与下游数据湖或存储解决方案的无缝集成。

Datadog

  1. 实时基础设施监控:使用 Datadog 插件实时监控服务器指标,方法是将 CPU 使用率和内存统计信息直接发送到 Datadog。这种集成使 IT 团队能够在集中式仪表板中可视化和分析系统性能指标,从而能够主动响应任何新兴问题,例如资源瓶颈或服务器过载。

  2. 应用程序性能跟踪:利用此插件提交特定于应用程序的指标,例如请求计数和错误率,到 Datadog。通过与应用程序监控工具集成,团队可以将基础设施指标与应用程序性能相关联,从而提供洞察力,使他们能够优化代码性能并改善用户体验。

  3. 指标中的异常检测:配置 Datadog 插件以发送指标,这些指标可以根据 Datadog 的机器学习功能检测到的异常模式触发警报和通知。这种主动监控有助于团队在客户受到影响之前快速响应潜在的中断或性能下降。

  4. 与云服务集成:通过利用 Datadog 插件发送来自云资源的指标,IT 团队可以深入了解云应用程序的性能。监控延迟和错误率等指标有助于确保满足服务级别协议 (SLA),并有助于优化跨云环境的资源分配。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。使用 InfluxDB,这是基于 Telegraf 构建的排名第一的时间序列平台,可进行扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成