目录
输入和输出集成概述
此插件允许您从 Kafka 主题实时收集指标,从而增强 Telegraf 设置中的数据监控和收集能力。
Dynatrace 插件允许用户将 Telegraf 收集的指标直接发送到 Dynatrace 进行监控和分析。此集成增强了系统和应用程序的可观察性,为性能和运行状况提供了宝贵的见解。
集成详情
Kafka
Kafka Telegraf 插件旨在从 Kafka 主题读取数据,并使用支持的输入数据格式创建指标。作为服务输入插件,它持续监听传入的指标和事件,这与以固定间隔运行的标准输入插件不同。此特定插件可以使用各种 Kafka 版本的功能,并且能够从指定主题消费消息,应用诸如使用 SASL 的安全凭证之类的配置,以及使用消息偏移量和消费者组选项管理消息处理。此插件的灵活性使其能够处理各种消息格式和用例,使其成为依赖 Kafka 进行数据摄取的应用程序的宝贵资产。
Dynatrace
Telegraf 的 Dynatrace 插件有助于通过 Dynatrace Metrics API V2 将指标传输到 Dynatrace 平台。此插件可以在两种模式下运行:它可以与 Dynatrace OneAgent 一起运行,后者可以自动进行身份验证;或者它可以在独立配置中运行,这需要为没有 OneAgent 的环境手动指定 URL 和 API 令牌。除非明确配置为使用可用的配置选项将某些指标视为增量计数器,否则该插件主要将指标报告为计量器。此功能使用户可以自定义发送到 Dynatrace 的指标的行为,从而利用该平台的强大功能进行全面的性能监控和可观察性。对于用户来说,确保 Dynatrace 和 Telegraf 都符合版本要求至关重要,从而在使用 Dynatrace 生态系统进行集成时优化兼容性和性能。
配置
Kafka
[[inputs.kafka_consumer]]
## Kafka brokers.
brokers = ["localhost:9092"]
## Set the minimal supported Kafka version. Should be a string contains
## 4 digits in case if it is 0 version and 3 digits for versions starting
## from 1.0.0 separated by dot. This setting enables the use of new
## Kafka features and APIs. Must be 0.10.2.0(used as default) or greater.
## Please, check the list of supported versions at
## https://pkg.go.dev/github.com/Shopify/sarama#SupportedVersions
## ex: kafka_version = "2.6.0"
## ex: kafka_version = "0.10.2.0"
# kafka_version = "0.10.2.0"
## Topics to consume.
topics = ["telegraf"]
## Topic regular expressions to consume. Matches will be added to topics.
## Example: topic_regexps = [ "*test", "metric[0-9A-z]*" ]
# topic_regexps = [ ]
## When set this tag will be added to all metrics with the topic as the value.
# topic_tag = ""
## The list of Kafka message headers that should be pass as metric tags
## works only for Kafka version 0.11+, on lower versions the message headers
## are not available
# msg_headers_as_tags = []
## The name of kafka message header which value should override the metric name.
## In case when the same header specified in current option and in msg_headers_as_tags
## option, it will be excluded from the msg_headers_as_tags list.
# msg_header_as_metric_name = ""
## Set metric(s) timestamp using the given source.
## Available options are:
## metric -- do not modify the metric timestamp
## inner -- use the inner message timestamp (Kafka v0.10+)
## outer -- use the outer (compressed) block timestamp (Kafka v0.10+)
# timestamp_source = "metric"
## Optional Client id
# client_id = "Telegraf"
## Optional TLS Config
# enable_tls = false
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Period between keep alive probes.
## Defaults to the OS configuration if not specified or zero.
# keep_alive_period = "15s"
## SASL authentication credentials. These settings should typically be used
## with TLS encryption enabled
# sasl_username = "kafka"
# sasl_password = "secret"
## Optional SASL:
## one of: OAUTHBEARER, PLAIN, SCRAM-SHA-256, SCRAM-SHA-512, GSSAPI
## (defaults to PLAIN)
# sasl_mechanism = ""
## used if sasl_mechanism is GSSAPI
# sasl_gssapi_service_name = ""
# ## One of: KRB5_USER_AUTH and KRB5_KEYTAB_AUTH
# sasl_gssapi_auth_type = "KRB5_USER_AUTH"
# sasl_gssapi_kerberos_config_path = "/"
# sasl_gssapi_realm = "realm"
# sasl_gssapi_key_tab_path = ""
# sasl_gssapi_disable_pafxfast = false
## used if sasl_mechanism is OAUTHBEARER
# sasl_access_token = ""
## SASL protocol version. When connecting to Azure EventHub set to 0.
# sasl_version = 1
# Disable Kafka metadata full fetch
# metadata_full = false
## Name of the consumer group.
# consumer_group = "telegraf_metrics_consumers"
## Compression codec represents the various compression codecs recognized by
## Kafka in messages.
## 0 : None
## 1 : Gzip
## 2 : Snappy
## 3 : LZ4
## 4 : ZSTD
# compression_codec = 0
## Initial offset position; one of "oldest" or "newest".
# offset = "oldest"
## Consumer group partition assignment strategy; one of "range", "roundrobin" or "sticky".
# balance_strategy = "range"
## Maximum number of retries for metadata operations including
## connecting. Sets Sarama library's Metadata.Retry.Max config value. If 0 or
## unset, use the Sarama default of 3,
# metadata_retry_max = 0
## Type of retry backoff. Valid options: "constant", "exponential"
# metadata_retry_type = "constant"
## Amount of time to wait before retrying. When metadata_retry_type is
## "constant", each retry is delayed this amount. When "exponential", the
## first retry is delayed this amount, and subsequent delays are doubled. If 0
## or unset, use the Sarama default of 250 ms
# metadata_retry_backoff = 0
## Maximum amount of time to wait before retrying when metadata_retry_type is
## "exponential". Ignored for other retry types. If 0, there is no backoff
## limit.
# metadata_retry_max_duration = 0
## When set to true, this turns each bootstrap broker address into a set of
## IPs, then does a reverse lookup on each one to get its canonical hostname.
## This list of hostnames then replaces the original address list.
## resolve_canonical_bootstrap_servers_only = false
## Strategy for making connection to kafka brokers. Valid options: "startup",
## "defer". If set to "defer" the plugin is allowed to start before making a
## connection. This is useful if the broker may be down when telegraf is
## started, but if there are any typos in the broker setting, they will cause
## connection failures without warning at startup
# connection_strategy = "startup"
## Maximum length of a message to consume, in bytes (default 0/unlimited);
## larger messages are dropped
max_message_len = 1000000
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Maximum amount of time the consumer should take to process messages. If
## the debug log prints messages from sarama about 'abandoning subscription
## to [topic] because consuming was taking too long', increase this value to
## longer than the time taken by the output plugin(s).
##
## Note that the effective timeout could be between 'max_processing_time' and
## '2 * max_processing_time'.
# max_processing_time = "100ms"
## The default number of message bytes to fetch from the broker in each
## request (default 1MB). This should be larger than the majority of
## your messages, or else the consumer will spend a lot of time
## negotiating sizes and not actually consuming. Similar to the JVM's
## `fetch.message.max.bytes`.
# consumer_fetch_default = "1MB"
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
Dynatrace
[[outputs.dynatrace]]
## For usage with the Dynatrace OneAgent you can omit any configuration,
## the only requirement is that the OneAgent is running on the same host.
## Only setup environment url and token if you want to monitor a Host without the OneAgent present.
##
## Your Dynatrace environment URL.
## For Dynatrace OneAgent you can leave this empty or set it to "http://127.0.0.1:14499/metrics/ingest" (default)
## For Dynatrace SaaS environments the URL scheme is "https://{your-environment-id}.live.dynatrace.com/api/v2/metrics/ingest"
## For Dynatrace Managed environments the URL scheme is "https://{your-domain}/e/{your-environment-id}/api/v2/metrics/ingest"
url = ""
## Your Dynatrace API token.
## Create an API token within your Dynatrace environment, by navigating to Settings > Integration > Dynatrace API
## The API token needs data ingest scope permission. When using OneAgent, no API token is required.
api_token = ""
## Optional prefix for metric names (e.g.: "telegraf")
prefix = "telegraf"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Optional flag for ignoring tls certificate check
# insecure_skip_verify = false
## Connection timeout, defaults to "5s" if not set.
timeout = "5s"
## If you want metrics to be treated and reported as delta counters, add the metric names here
additional_counters = [ ]
## In addition or as an alternative to additional_counters, if you want metrics to be treated and
## reported as delta counters using regular expression pattern matching
additional_counters_patterns = [ ]
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of the
## table
## Optional dimensions to be added to every metric
# [outputs.dynatrace.default_dimensions]
# default_key = "default value"
输入和输出集成示例
Kafka
-
实时数据处理:使用 Kafka 插件将来自 Kafka 主题的实时数据馈送到监控系统。这对于需要即时反馈性能指标或用户活动的应用尤其有用,使企业能够更快速地对其环境中的变化条件做出反应。
-
动态指标收集:利用此插件根据 Kafka 中发生的事件动态调整正在捕获的指标。例如,通过与其他服务集成,用户可以让插件即时重新配置自身,确保始终根据业务或应用程序的需求收集相关指标。
-
集中式日志记录和监控:使用 Kafka Consumer Plugin 实施集中式日志记录系统,以将来自多个服务的日志聚合到统一的监控仪表板中。此设置可以帮助识别不同服务之间的问题,并提高整体系统可观察性和故障排除能力。
-
异常检测系统:将 Kafka 与机器学习算法结合使用以进行实时异常检测。通过不断分析流数据,此设置可以自动识别异常模式,触发警报并更有效地缓解潜在问题。
Dynatrace
-
云基础设施监控:利用 Dynatrace 插件监控云基础设施设置,将来自 Telegraf 的实时指标馈送到 Dynatrace。此集成提供了资源利用率、应用程序性能和系统运行状况的整体视图,从而能够主动响应各种云环境中的性能问题。
-
自定义应用程序性能指标:通过配置 Dynatrace 输出插件以发送来自 Telegraf 的定制指标,实施自定义应用程序特定指标。通过利用额外的计数器和维度选项,开发团队可以获得与应用程序的运营需求精确对齐的见解,从而实现有针对性的优化工作。
-
多环境指标管理:对于运行多个 Dynatrace 环境(例如,生产、暂存和开发)的组织,请使用此插件从单个 Telegraf 实例管理所有环境的指标。通过正确配置端点和 API 令牌,团队可以在整个 SDLC 中保持一致的监控实践,确保在开发过程的早期检测到性能异常。
-
基于指标变化的自动警报:将 Dynatrace 输出插件与警报机制集成,当特定指标超过定义的阈值时,该机制会触发通知。此场景涉及配置额外的计数器来监控关键应用程序性能指标,从而能够采取快速补救措施以保持服务可用性和用户满意度。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。