目录
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。使用 InfluxDB,这是基于 Telegraf 构建的排名第一的时间序列平台,可进行扩展。
查看入门方法
输入和输出集成概述
Jenkins 插件通过其 API 从 Jenkins 实例收集关于作业和节点的重要信息,从而促进全面的监控和分析。
Datadog Telegraf 插件能够将指标提交到 Datadog Metrics API,通过可靠的指标摄取过程促进高效的监控和数据分析。
集成详情
Jenkins
Jenkins Telegraf 插件允许用户从 Jenkins 实例收集指标,而无需在 Jenkins 本身安装任何额外的插件。通过利用 Jenkins API,该插件检索有关 Jenkins 环境中运行的节点和作业的信息。这种集成提供了 Jenkins 基础设施的全面概述,包括可用于监控和分析的实时指标。主要功能包括用于作业和节点选择的可配置过滤器、可选的 TLS 安全设置以及有效管理请求超时和连接限制的能力。这使其成为依赖 Jenkins 进行持续集成和交付的团队的重要工具,确保他们拥有维护最佳性能和可靠性所需的洞察力。
Datadog
此插件写入 Datadog Metrics API,使用户能够发送指标以进行监控和性能分析。通过使用 Datadog API 密钥,用户可以将插件配置为与 Datadog 的 v1 API 建立连接。该插件支持各种配置选项,包括连接超时、HTTP 代理设置和数据压缩方法,确保适应不同的部署环境。将计数指标转换为速率的能力增强了 Telegraf 与 Datadog 代理的集成,尤其有利于依赖实时性能指标的应用程序。
配置
Jenkins
[[inputs.jenkins]]
## The Jenkins URL in the format "schema://host:port"
url = "http://my-jenkins-instance:8080"
# username = "admin"
# password = "admin"
## Set response_timeout
response_timeout = "5s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use SSL but skip chain & host verification
# insecure_skip_verify = false
## Optional Max Job Build Age filter
## Default 1 hour, ignore builds older than max_build_age
# max_build_age = "1h"
## Optional Sub Job Depth filter
## Jenkins can have unlimited layer of sub jobs
## This config will limit the layers of pulling, default value 0 means
## unlimited pulling until no more sub jobs
# max_subjob_depth = 0
## Optional Sub Job Per Layer
## In workflow-multibranch-plugin, each branch will be created as a sub job.
## This config will limit to call only the lasted branches in each layer,
## empty will use default value 10
# max_subjob_per_layer = 10
## Jobs to include or exclude from gathering
## When using both lists, job_exclude has priority.
## Wildcards are supported: [ "jobA/*", "jobB/subjob1/*"]
# job_include = [ "*" ]
# job_exclude = [ ]
## Nodes to include or exclude from gathering
## When using both lists, node_exclude has priority.
# node_include = [ "*" ]
# node_exclude = [ ]
## Worker pool for jenkins plugin only
## Empty this field will use default value 5
# max_connections = 5
## When set to true will add node labels as a comma-separated tag. If none,
## are found, then a tag with the value of 'none' is used. Finally, if a
## label contains a comma it is replaced with an underscore.
# node_labels_as_tag = false
Datadog
[[outputs.datadog]]
## Datadog API key
apikey = "my-secret-key"
## Connection timeout.
# timeout = "5s"
## Write URL override; useful for debugging.
## This plugin only supports the v1 API currently due to the authentication
## method used.
# url = "https://app.datadoghq.com/api/v1/series"
## Set http_proxy
# use_system_proxy = false
# http_proxy_url = "http://localhost:8888"
## Override the default (none) compression used to send data.
## Supports: "zlib", "none"
# compression = "none"
## When non-zero, converts count metrics submitted by inputs.statsd
## into rate, while dividing the metric value by this number.
## Note that in order for metrics to be submitted simultaenously alongside
## a Datadog agent, rate_interval has to match the interval used by the
## agent - which defaults to 10s
# rate_interval = 0s
输入和输出集成示例
Jenkins
-
持续集成监控:使用 Jenkins 插件通过收集作业持续时间和失败率的指标来监控持续集成管道的性能。这可以帮助团队识别管道中的瓶颈并提高整体构建效率。
-
资源分配分析:利用 Jenkins 节点指标来评估不同代理之间的资源使用情况。通过了解如何分配资源,团队可以优化其 Jenkins 架构,有可能重新分配代理或调整作业配置以获得更好的性能。
-
作业执行趋势:分析历史作业性能指标以识别作业执行随时间变化的趋势。通过这些数据,团队可以在潜在问题扩大之前主动解决,根据需要调整作业或其配置。
-
作业失败警报:实施利用 Jenkins 作业指标的警报,以便在作业失败时通知团队成员。这种主动方法可以提高运营意识并加快对失败的响应时间,确保有效监控关键作业。
Datadog
-
实时基础设施监控:使用 Datadog 插件通过将 CPU 使用率和内存统计信息直接发送到 Datadog 来实时监控服务器指标。这种集成允许 IT 团队在集中式仪表板中可视化和分析系统性能指标,从而主动响应任何新出现的问题,例如资源瓶颈或服务器过载。
-
应用程序性能跟踪:利用此插件提交特定于应用程序的指标(例如请求计数和错误率)到 Datadog。通过与应用程序监控工具集成,团队可以将基础设施指标与应用程序性能相关联,从而提供洞察力,使他们能够优化代码性能并改善用户体验。
-
指标中的异常检测:配置 Datadog 插件以发送指标,这些指标可以根据 Datadog 机器学习功能检测到的异常模式触发警报和通知。这种主动监控有助于团队在客户受到影响之前迅速对潜在的中断或性能下降做出反应。
-
与云服务集成:通过利用 Datadog 插件发送来自云资源的指标,IT 团队可以了解云应用程序性能。监控延迟和错误率等指标有助于确保满足服务级别协议 (SLA),还有助于优化跨云环境的资源分配。
反馈
感谢您成为我们社区的一份子!如果您有任何一般反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。使用 InfluxDB,这是基于 Telegraf 构建的排名第一的时间序列平台,可进行扩展。
查看入门方法