HTTP 和 PostgreSQL 集成

通过易于集成的强大性能,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了实现查询和压缩优化、高速摄取和高可用性,您可能需要考虑 HTTP 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

HTTP 插件允许从指定的 HTTP 端点收集指标,处理各种数据格式和身份验证方法。

Telegraf PostgreSQL 插件允许您有效地将指标写入 PostgreSQL 数据库,同时自动管理数据库架构。

集成详情

HTTP

HTTP 插件从一个或多个 HTTP(S) 端点收集指标,这些端点应具有以受支持的输入数据格式之一格式化的指标。它还支持来自密钥存储的密钥,用于各种身份验证选项,并包括全局支持的配置设置。

PostgreSQL

PostgreSQL 插件使用户能够将指标写入 PostgreSQL 数据库或兼容数据库,为模式管理提供强大的支持,通过自动更新缺失的列。该插件旨在促进与监控解决方案的集成,允许用户有效地存储和管理时间序列数据。它为连接设置、并发和错误处理提供可配置的选项,并支持高级功能,例如用于标签和字段的 JSONB 存储、外键标记、模板化模式修改以及通过 pguint 扩展支持无符号整数数据类型。

配置

HTTP

[[inputs.http]]
  ## One or more URLs from which to read formatted metrics.
  urls = [
    "http://localhost/metrics",
    "http+unix:///run/user/420/podman/podman.sock:/d/v4.0.0/libpod/pods/json"
  ]

  ## HTTP method
  # method = "GET"

  ## Optional HTTP headers
  # headers = {"X-Special-Header" = "Special-Value"}

  ## HTTP entity-body to send with POST/PUT requests.
  # body = ""

  ## HTTP Content-Encoding for write request body, can be set to "gzip" to
  ## compress body or "identity" to apply no encoding.
  # content_encoding = "identity"

  ## Optional Bearer token settings to use for the API calls.
  ## Use either the token itself or the token file if you need a token.
  # token = "eyJhbGc...Qssw5c"
  # token_file = "/path/to/file"

  ## Optional HTTP Basic Auth Credentials
  # username = "username"
  # password = "pa$$word"

  ## OAuth2 Client Credentials. The options 'client_id', 'client_secret', and 'token_url' are required to use OAuth2.
  # client_id = "clientid"
  # client_secret = "secret"
  # token_url = "https://indentityprovider/oauth2/v1/token"
  # scopes = ["urn:opc:idm:__myscopes__"]

  ## HTTP Proxy support
  # use_system_proxy = false
  # http_proxy_url = ""

  ## Optional TLS Config
  ## Set to true/false to enforce TLS being enabled/disabled. If not set,
  ## enable TLS only if any of the other options are specified.
  # tls_enable =
  ## Trusted root certificates for server
  # tls_ca = "/path/to/cafile"
  ## Used for TLS client certificate authentication
  # tls_cert = "/path/to/certfile"
  ## Used for TLS client certificate authentication
  # tls_key = "/path/to/keyfile"
  ## Password for the key file if it is encrypted
  # tls_key_pwd = ""
  ## Send the specified TLS server name via SNI
  # tls_server_name = "kubernetes.example.com"
  ## Minimal TLS version to accept by the client
  # tls_min_version = "TLS12"
  ## List of ciphers to accept, by default all secure ciphers will be accepted
  ## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
  ## Use "all", "secure" and "insecure" to add all support ciphers, secure
  ## suites or insecure suites respectively.
  # tls_cipher_suites = ["secure"]
  ## Renegotiation method, "never", "once" or "freely"
  # tls_renegotiation_method = "never"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Optional Cookie authentication
  # cookie_auth_url = "https://localhost/authMe"
  # cookie_auth_method = "POST"
  # cookie_auth_username = "username"
  # cookie_auth_password = "pa$$word"
  # cookie_auth_headers = { Content-Type = "application/json", X-MY-HEADER = "hello" }
  # cookie_auth_body = '{"username": "user", "password": "pa$$word", "authenticate": "me"}'
  ## cookie_auth_renewal not set or set to "0" will auth once and never renew the cookie
  # cookie_auth_renewal = "5m"

  ## Amount of time allowed to complete the HTTP request
  # timeout = "5s"

  ## List of success status codes
  # success_status_codes = [200]

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  # data_format = "influx"

PostgreSQL

# Publishes metrics to a postgresql database
[[outputs.postgresql]]
  ## Specify connection address via the standard libpq connection string:
  ##   host=... user=... password=... sslmode=... dbname=...
  ## Or a URL:
  ##   postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
  ## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
  ##
  ## All connection parameters are optional. Environment vars are also supported.
  ## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
  ## All supported vars can be found here:
  ##  https://postgresql.ac.cn/docs/current/libpq-envars.html
  ##
  ## Non-standard parameters:
  ##   pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
  ##   pool_min_conns (default: 0) - Minimum size of connection pool.
  ##   pool_max_conn_lifetime (default: 0s) - Maximum age of a connection before closing.
  ##   pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
  ##   pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
  # connection = ""

  ## Postgres schema to use.
  # schema = "public"

  ## Store tags as foreign keys in the metrics table. Default is false.
  # tags_as_foreign_keys = false

  ## Suffix to append to table name (measurement name) for the foreign tag table.
  # tag_table_suffix = "_tag"

  ## Deny inserting metrics if the foreign tag can't be inserted.
  # foreign_tag_constraint = false

  ## Store all tags as a JSONB object in a single 'tags' column.
  # tags_as_jsonb = false

  ## Store all fields as a JSONB object in a single 'fields' column.
  # fields_as_jsonb = false

  ## Name of the timestamp column
  ## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
  # timestamp_column_name = "time"

  ## Type of the timestamp column
  ## Currently, "timestamp without time zone" and "timestamp with time zone"
  ## are supported
  # timestamp_column_type = "timestamp without time zone"

  ## Templated statements to execute when creating a new table.
  # create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }})''',
  # ]

  ## Templated statements to execute when adding columns to a table.
  ## Set to an empty list to disable. Points containing tags for which there is no column will be skipped. Points
  ## containing fields for which there is no column will have the field omitted.
  # add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## Templated statements to execute when creating a new tag table.
  # tag_table_create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
  # ]

  ## Templated statements to execute when adding columns to a tag table.
  ## Set to an empty list to disable. Points containing tags for which there is no column will be skipped.
  # tag_table_add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## The postgres data type to use for storing unsigned 64-bit integer values (Postgres does not have a native
  ## unsigned 64-bit integer type).
  ## The value can be one of:
  ##   numeric - Uses the PostgreSQL "numeric" data type.
  ##   uint8 - Requires pguint extension (https://github.com/petere/pguint)
  # uint64_type = "numeric"

  ## When using pool_max_conns>1, and a temporary error occurs, the query is retried with an incremental backoff. This
  ## controls the maximum backoff duration.
  # retry_max_backoff = "15s"

  ## Approximate number of tag IDs to store in in-memory cache (when using tags_as_foreign_keys).
  ## This is an optimization to skip inserting known tag IDs.
  ## Each entry consumes approximately 34 bytes of memory.
  # tag_cache_size = 100000

  ## Enable & set the log level for the Postgres driver.
  # log_level = "warn" # trace, debug, info, warn, error, none

输入和输出集成示例

HTTP

  1. 从本地主机收集指标: 该插件可以从 HTTP 端点(如 http://localhost/metrics)获取指标,从而实现简单的本地监控。
  2. 使用 Unix 域套接字: 您可以通过使用 http+unix 方案指定从 Unix 域套接字上的服务收集指标,例如 http+unix:///path/to/service.sock:/api/endpoint

PostgreSQL

  1. 使用复杂查询进行实时分析:利用 PostgreSQL 插件将来自各种来源的指标存储在 PostgreSQL 数据库中,从而可以使用复杂查询进行实时分析。这种设置可以帮助数据科学家和分析师发现模式和趋势,因为他们可以跨多个表操作关系数据,同时利用 PostgreSQL 强大的查询优化功能。具体来说,用户可以使用跨不同指标表的 JOIN 操作创建复杂的报告,从而揭示通常在嵌入式系统中仍然隐藏的见解。

  2. 与 TimescaleDB 集成以进行时间序列数据处理:在 TimescaleDB 实例中使用 PostgreSQL 插件,以高效地处理和分析时间序列数据。通过实施超表,用户可以在时间维度上实现更高的性能和主题分区。这种集成允许用户对大量时间序列数据运行分析查询,同时保留 PostgreSQL SQL 查询的全部功能,从而确保指标分析的可靠性和效率。

  3. 数据版本控制和历史分析:实施使用 PostgreSQL 插件的策略,以维护指标的不同版本。用户可以设置不可变的数据表结构,其中保留旧版本的表,从而轻松进行历史分析。这种方法不仅提供了对数据演变的洞察力,还有助于遵守数据保留策略,确保数据集的历史完整性保持不变。

  4. 用于不断发展的指标的动态模式管理:使用插件的模板功能创建动态变化的模式,以响应指标变化。此用例允许组织在指标发展时调整其数据结构,添加必要的字段并确保遵守数据完整性策略。通过利用模板化的 SQL 命令,用户无需手动干预即可扩展其数据库,从而促进敏捷的数据管理实践。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成