目录
输入和输出集成概述
HTTP 插件允许从指定的 HTTP 端点收集指标,处理各种数据格式和身份验证方法。
Datadog Telegraf 插件能够将指标提交到 Datadog Metrics API,通过可靠的指标摄取过程促进高效的监控和数据分析。
集成详情
HTTP
HTTP 插件从一个或多个 HTTP(S) 端点收集指标,这些端点应具有以支持的输入数据格式之一格式化的指标。它还支持来自 secret-stores 的密钥,用于各种身份验证选项,并包括全局支持的配置设置。
Datadog
此插件写入 Datadog Metrics API,使用户能够发送指标以进行监控和性能分析。通过使用 Datadog API 密钥,用户可以将插件配置为与 Datadog 的 v1 API 建立连接。该插件支持各种配置选项,包括连接超时、HTTP 代理设置和数据压缩方法,确保适应不同的部署环境。将计数指标转换为速率的能力增强了 Telegraf 与 Datadog 代理的集成,这对于依赖实时性能指标的应用程序尤其有益。
配置
HTTP
[[inputs.http]]
## One or more URLs from which to read formatted metrics.
urls = [
"http://localhost/metrics",
"http+unix:///run/user/420/podman/podman.sock:/d/v4.0.0/libpod/pods/json"
]
## HTTP method
# method = "GET"
## Optional HTTP headers
# headers = {"X-Special-Header" = "Special-Value"}
## HTTP entity-body to send with POST/PUT requests.
# body = ""
## HTTP Content-Encoding for write request body, can be set to "gzip" to
## compress body or "identity" to apply no encoding.
# content_encoding = "identity"
## Optional Bearer token settings to use for the API calls.
## Use either the token itself or the token file if you need a token.
# token = "eyJhbGc...Qssw5c"
# token_file = "/path/to/file"
## Optional HTTP Basic Auth Credentials
# username = "username"
# password = "pa$$word"
## OAuth2 Client Credentials. The options 'client_id', 'client_secret', and 'token_url' are required to use OAuth2.
# client_id = "clientid"
# client_secret = "secret"
# token_url = "https://indentityprovider/oauth2/v1/token"
# scopes = ["urn:opc:idm:__myscopes__"]
## HTTP Proxy support
# use_system_proxy = false
# http_proxy_url = ""
## Optional TLS Config
## Set to true/false to enforce TLS being enabled/disabled. If not set,
## enable TLS only if any of the other options are specified.
# tls_enable =
## Trusted root certificates for server
# tls_ca = "/path/to/cafile"
## Used for TLS client certificate authentication
# tls_cert = "/path/to/certfile"
## Used for TLS client certificate authentication
# tls_key = "/path/to/keyfile"
## Password for the key file if it is encrypted
# tls_key_pwd = ""
## Send the specified TLS server name via SNI
# tls_server_name = "kubernetes.example.com"
## Minimal TLS version to accept by the client
# tls_min_version = "TLS12"
## List of ciphers to accept, by default all secure ciphers will be accepted
## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
## Use "all", "secure" and "insecure" to add all support ciphers, secure
## suites or insecure suites respectively.
# tls_cipher_suites = ["secure"]
## Renegotiation method, "never", "once" or "freely"
# tls_renegotiation_method = "never"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Optional Cookie authentication
# cookie_auth_url = "https://localhost/authMe"
# cookie_auth_method = "POST"
# cookie_auth_username = "username"
# cookie_auth_password = "pa$$word"
# cookie_auth_headers = { Content-Type = "application/json", X-MY-HEADER = "hello" }
# cookie_auth_body = '{"username": "user", "password": "pa$$word", "authenticate": "me"}'
## cookie_auth_renewal not set or set to "0" will auth once and never renew the cookie
# cookie_auth_renewal = "5m"
## Amount of time allowed to complete the HTTP request
# timeout = "5s"
## List of success status codes
# success_status_codes = [200]
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
# data_format = "influx"
Datadog
[[outputs.datadog]]
## Datadog API key
apikey = "my-secret-key"
## Connection timeout.
# timeout = "5s"
## Write URL override; useful for debugging.
## This plugin only supports the v1 API currently due to the authentication
## method used.
# url = "https://app.datadoghq.com/api/v1/series"
## Set http_proxy
# use_system_proxy = false
# http_proxy_url = "http://localhost:8888"
## Override the default (none) compression used to send data.
## Supports: "zlib", "none"
# compression = "none"
## When non-zero, converts count metrics submitted by inputs.statsd
## into rate, while dividing the metric value by this number.
## Note that in order for metrics to be submitted simultaenously alongside
## a Datadog agent, rate_interval has to match the interval used by the
## agent - which defaults to 10s
# rate_interval = 0s
输入和输出集成示例
HTTP
- 从本地主机收集指标: 该插件可以从 HTTP 端点(如
http://localhost/metrics
)获取指标,从而实现轻松的本地监控。 - 使用 Unix 域套接字: 您可以使用 http+unix 方案指定从 Unix 域套接字上的服务收集指标,例如,
http+unix:///path/to/service.sock:/api/endpoint
。
Datadog
-
实时基础设施监控:使用 Datadog 插件通过将 CPU 使用率和内存统计信息直接发送到 Datadog 来实时监控服务器指标。此集成允许 IT 团队在集中式仪表板中可视化和分析系统性能指标,从而能够主动响应任何新出现的问题,例如资源瓶颈或服务器过载。
-
应用程序性能跟踪:利用此插件向 Datadog 提交特定于应用程序的指标,例如请求计数和错误率。通过与应用程序监控工具集成,团队可以将基础设施指标与应用程序性能相关联,从而提供洞察力,使他们能够优化代码性能并改善用户体验。
-
指标中的异常检测:配置 Datadog 插件以发送指标,这些指标可以根据 Datadog 机器学习功能检测到的异常模式触发警报和通知。这种主动监控有助于团队在客户受到影响之前迅速对潜在的中断或性能下降做出反应。
-
与云服务集成:通过利用 Datadog 插件从云资源发送指标,IT 团队可以了解云应用程序的性能。监控延迟和错误率等指标有助于确保满足服务级别协议 (SLA),并有助于优化跨云环境的资源分配。
反馈
感谢您成为我们社区的一份子!如果您有任何一般反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。