目录
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法
输入和输出集成概述
此插件收集并报告来自 HAProxy(一种流行的开源负载均衡器和代理服务器)的统计信息,以帮助监控和优化其性能。
Telegraf PostgreSQL 插件允许您高效地将指标写入 PostgreSQL 数据库,同时自动管理数据库模式。
集成详情
HAProxy
Telegraf 的 HAProxy 插件使用户能够直接从 HAProxy 服务器通过其统计套接字或 HTTP 统计页面收集统计信息。HAProxy 是一种广泛使用的软件负载均衡器和代理服务器,为 TCP 和 HTTP 应用程序提供高可用性和性能。通过与 HAProxy 集成,此插件允许用户实时监控和分析各种性能指标,例如活动服务器计数、请求率、响应代码和会话状态,从而促进更好的决策和对网络资源的积极管理。主要功能包括支持基于 HTTP 和套接字的指标收集、与基本身份验证的兼容性以实现安全访问,以及指标字段命名的可配置选项,从而可以根据用户偏好进行自定义。
PostgreSQL
PostgreSQL 插件使用户能够将指标写入 PostgreSQL 数据库或兼容数据库,为模式管理提供强大的支持,方法是自动更新缺失的列。该插件旨在促进与监控解决方案的集成,使用户能够高效地存储和管理时间序列数据。它为连接设置、并发和错误处理提供可配置选项,并支持高级功能,例如用于标签和字段的 JSONB 存储、外键标记、模板化模式修改以及通过 pguint 扩展支持无符号整数数据类型。
配置
HAProxy
[[inputs.haproxy]]
## List of stats endpoints. Metrics can be collected from both http and socket
## endpoints. Examples of valid endpoints:
## - http://myhaproxy.com:1936/haproxy?stats
## - https://myhaproxy.com:8000/stats
## - socket:/run/haproxy/admin.sock
## - /run/haproxy/*.sock
## - tcp://127.0.0.1:1936
##
## Server addresses not starting with 'http://', 'https://', 'tcp://' will be
## treated as possible sockets. When specifying local socket, glob patterns are
## supported.
servers = ["http://myhaproxy.com:1936/haproxy?stats"]
## By default, some of the fields are renamed from what haproxy calls them.
## Setting this option to true results in the plugin keeping the original
## field names.
# keep_field_names = false
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
PostgreSQL
# Publishes metrics to a postgresql database
[[outputs.postgresql]]
## Specify connection address via the standard libpq connection string:
## host=... user=... password=... sslmode=... dbname=...
## Or a URL:
## postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
##
## All connection parameters are optional. Environment vars are also supported.
## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
## All supported vars can be found here:
## https://postgresql.ac.cn/docs/current/libpq-envars.html
##
## Non-standard parameters:
## pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
## pool_min_conns (default: 0) - Minimum size of connection pool.
## pool_max_conn_lifetime (default: 0s) - Maximum age of a connection before closing.
## pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
## pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
# connection = ""
## Postgres schema to use.
# schema = "public"
## Store tags as foreign keys in the metrics table. Default is false.
# tags_as_foreign_keys = false
## Suffix to append to table name (measurement name) for the foreign tag table.
# tag_table_suffix = "_tag"
## Deny inserting metrics if the foreign tag can't be inserted.
# foreign_tag_constraint = false
## Store all tags as a JSONB object in a single 'tags' column.
# tags_as_jsonb = false
## Store all fields as a JSONB object in a single 'fields' column.
# fields_as_jsonb = false
## Name of the timestamp column
## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
# timestamp_column_name = "time"
## Type of the timestamp column
## Currently, "timestamp without time zone" and "timestamp with time zone"
## are supported
# timestamp_column_type = "timestamp without time zone"
## Templated statements to execute when creating a new table.
# create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }})''',
# ]
## Templated statements to execute when adding columns to a table.
## Set to an empty list to disable. Points containing tags for which there is no column will be skipped. Points
## containing fields for which there is no column will have the field omitted.
# add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## Templated statements to execute when creating a new tag table.
# tag_table_create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
# ]
## Templated statements to execute when adding columns to a tag table.
## Set to an empty list to disable. Points containing tags for which there is no column will be skipped.
# tag_table_add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## The postgres data type to use for storing unsigned 64-bit integer values (Postgres does not have a native
## unsigned 64-bit integer type).
## The value can be one of:
## numeric - Uses the PostgreSQL "numeric" data type.
## uint8 - Requires pguint extension (https://github.com/petere/pguint)
# uint64_type = "numeric"
## When using pool_max_conns>1, and a temporary error occurs, the query is retried with an incremental backoff. This
## controls the maximum backoff duration.
# retry_max_backoff = "15s"
## Approximate number of tag IDs to store in in-memory cache (when using tags_as_foreign_keys).
## This is an optimization to skip inserting known tag IDs.
## Each entry consumes approximately 34 bytes of memory.
# tag_cache_size = 100000
## Enable & set the log level for the Postgres driver.
# log_level = "warn" # trace, debug, info, warn, error, none
输入和输出集成示例
HAProxy
-
动态负载调整:利用 HAProxy 插件实时监控流量模式,从而实现负载均衡算法的自动调整。通过持续收集服务器负载和请求率的指标,系统管理员可以动态分配资源,确保没有单个服务器成为瓶颈,从而提高整体应用程序性能和可用性。
-
历史性能分析:将此插件与时间序列数据库集成,以收集 HAProxy 指标,从而分析历史性能和流量趋势。这可以促进预测性分析和容量规划,为企业提供有关流量高峰时段的见解,并帮助识别潜在的未来资源需求。
-
异常告警:实施告警工作流程,以便在 HAProxy 指标中检测到异常模式时触发告警,例如错误率突然飙升或请求处理能力下降。通过利用此插件,运营团队可以及时收到通知,从而实现快速干预并最大限度地减少潜在停机对最终用户的影响。
PostgreSQL
-
使用复杂查询进行实时分析:利用 PostgreSQL 插件将来自各种来源的指标存储在 PostgreSQL 数据库中,从而使用复杂查询进行实时分析。此设置可以帮助数据科学家和分析师发现模式和趋势,因为他们可以在多个表之间操作关系数据,同时利用 PostgreSQL 强大的查询优化功能。具体而言,用户可以使用跨不同指标表的 JOIN 操作创建复杂的报告,从而揭示通常在嵌入式系统中仍然隐藏的见解。
-
与 TimescaleDB 集成以进行时间序列数据处理:在 TimescaleDB 实例中使用 PostgreSQL 插件,以高效地处理和分析时间序列数据。通过实施超表,用户可以在时间维度上实现更高的性能和主题分区。此集成允许用户对大量时间序列数据运行分析查询,同时保留 PostgreSQL SQL 查询的全部功能,从而确保指标分析的可靠性和效率。
-
数据版本控制和历史分析:实施使用 PostgreSQL 插件维护指标不同版本的策略。用户可以设置不可变的数据表结构,其中保留旧版本的表,从而方便历史分析。这种方法不仅可以深入了解数据演变,还可以帮助遵守数据保留策略,确保数据集历史完整性保持不变。
-
用于不断发展的指标的动态模式管理:使用插件的模板功能创建动态变化的模式,以响应指标变化。此用例允许组织随着指标的发展调整其数据结构,添加必要的字段并确保遵守数据完整性策略。通过利用模板化的 SQL 命令,用户无需手动干预即可扩展其数据库,从而促进敏捷数据管理实践。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法