Google Cloud Storage 和 TimescaleDB 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了实现查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Google Cloud Storage 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB-Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都会更有价值。通过 InfluxDB,这个排名第一的时序平台,与 Telegraf 一起构建以实现扩展。

查看入门方法

输入和输出集成概述

Google Cloud Storage 插件从指定的 Google Cloud Storage 存储桶收集指标,从而深入了解存储使用情况和性能。

此输出插件为将 Telegraf 收集的指标直接路由到 TimescaleDB 提供了可靠高效的机制。通过利用 PostgreSQL 强大的生态系统以及 TimescaleDB 的时序优化,它支持高性能数据摄取和高级查询功能。

集成详情

Google Cloud Storage

Google Cloud Storage Telegraf 插件能够从指定的 Google Cloud Storage 存储桶中收集指标。随着组织越来越依赖云存储解决方案进行数据管理,监控这些资源的性能和利用率的能力变得至关重要。此插件对于跟踪存储使用情况、了解数据模式以及确保运营效率特别有用。通过与 Google Cloud Storage API 集成,它允许用户从其云环境中收集见解,并将指标直接馈送到监控系统以进行进一步分析。该插件支持各种配置选项,使用户能够根据其特定需求自定义数据收集过程。

TimescaleDB

TimescaleDB 是一个开源时序数据库,作为 PostgreSQL 的扩展构建,旨在高效处理大规模、面向时间的数据。TimescaleDB 于 2017 年推出,是为了响应对强大、可扩展的解决方案日益增长的需求,该解决方案可以管理大量数据,同时具有高插入率和复杂查询。通过利用 PostgreSQL 熟悉的 SQL 接口并通过专门的时序功能对其进行增强,TimescaleDB 在希望将时序功能集成到现有关系数据库中的开发人员中迅速普及。其混合方法允许用户受益于 PostgreSQL 的灵活性、可靠性和生态系统,同时为时序数据提供优化的性能。

该数据库在需要快速摄取数据点以及对历史时期进行复杂分析查询的环境中尤其有效。TimescaleDB 具有许多创新功能,例如透明地将数据分区为可管理块的超表和内置的持续聚合。这些功能可以显着提高查询速度和资源效率。

配置

Google Cloud Storage

[[inputs.google_cloud_storage]]
  bucket = "my-bucket"
  # key_prefix = "my-bucket"
  offset_key = "offset_key"
  objects_per_iteration = 10
  data_format = "influx"
  # credentials_file = "path/to/my/creds.json"

TimescaleDB

# Publishes metrics to a TimescaleDB database
[[outputs.postgresql]]
  ## Specify connection address via the standard libpq connection string:
  ##   host=... user=... password=... sslmode=... dbname=...
  ## Or a URL:
  ##   postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
  ## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
  ##
  ## All connection parameters are optional. Environment vars are also supported.
  ## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
  ## All supported vars can be found here:
  ##  https://postgresql.ac.cn/docs/current/libpq-envars.html
  ##
  ## Non-standard parameters:
  ##   pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
  ##   pool_min_conns (default: 0) - Minimum size of connection pool.
  ##   pool_max_conn_lifetime (default: 0s) - Maximum connection age before closing.
  ##   pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
  ##   pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
  # connection = ""

  ## Postgres schema to use.
  # schema = "public"

  ## Store tags as foreign keys in the metrics table. Default is false.
  # tags_as_foreign_keys = false

  ## Suffix to append to table name (measurement name) for the foreign tag table.
  # tag_table_suffix = "_tag"

  ## Deny inserting metrics if the foreign tag can't be inserted.
  # foreign_tag_constraint = false

  ## Store all tags as a JSONB object in a single 'tags' column.
  # tags_as_jsonb = false

  ## Store all fields as a JSONB object in a single 'fields' column.
  # fields_as_jsonb = false

  ## Name of the timestamp column
  ## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
  # timestamp_column_name = "time"

  ## Type of the timestamp column
  ## Currently, "timestamp without time zone" and "timestamp with time zone"
  ## are supported
  # timestamp_column_type = "timestamp without time zone"

  ## Templated statements to execute when creating a new table.
  # create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }})''',
  # ]

  ## Templated statements to execute when adding columns to a table.
  ## Set to an empty list to disable. Points containing tags for which there is
  ## no column will be skipped. Points containing fields for which there is no
  ## column will have the field omitted.
  # add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## Templated statements to execute when creating a new tag table.
  # tag_table_create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
  # ]

  ## Templated statements to execute when adding columns to a tag table.
  ## Set to an empty list to disable. Points containing tags for which there is
  ## no column will be skipped.
  # tag_table_add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## The postgres data type to use for storing unsigned 64-bit integer values
  ## (Postgres does not have a native unsigned 64-bit integer type).
  ## The value can be one of:
  ##   numeric - Uses the PostgreSQL "numeric" data type.
  ##   uint8 - Requires pguint extension (https://github.com/petere/pguint)
  # uint64_type = "numeric"

  ## When using pool_max_conns > 1, and a temporary error occurs, the query is
  ## retried with an incremental backoff. This controls the maximum duration.
  # retry_max_backoff = "15s"

  ## Approximate number of tag IDs to store in in-memory cache (when using
  ## tags_as_foreign_keys). This is an optimization to skip inserting known
  ## tag IDs. Each entry consumes approximately 34 bytes of memory.
  # tag_cache_size = 100000

  ## Cut column names at the given length to not exceed PostgreSQL's
  ## 'identifier length' limit (default: no limit)
  ## (see https://postgresql.ac.cn/docs/current/limits.html)
  ## Be careful to not create duplicate column names!
  # column_name_length_limit = 0

  ## Enable & set the log level for the Postgres driver.
  # log_level = "warn" # trace, debug, info, warn, error, none

输入和输出集成示例

Google Cloud Storage

  1. 自动化备份监控:利用 Google Cloud Storage 插件定期监控存储在 Cloud Storage 存储桶中的备份文件的状态。通过配置插件以跟踪文件指标,组织可以在备份大小偏离预期模式时自动发出警报,从而确保数据保护流程正常运行,并及时解决任何异常情况。

  2. 成本优化洞察:将此插件集成到成本管理工具中,以分析 Cloud Storage 的使用模式。通过收集有关文件大小和访问频率的指标,团队可以优化其存储解决方案,并就数据保留策略做出明智的决策,从而可能降低不必要的存储成本并提高资源分配效率。

  3. 合规性和审计:使用此插件生成有助于验证存储在 Google Cloud Storage 中的数据合规性的指标。通过提供有关数据访问和存储使用情况的详细见解,组织可以确保遵守法规要求,从而有助于审计并符合数据治理的最佳实践。

  4. 性能基准测试:部署此插件以基准测试 Google Cloud Storage 中数据检索和存储操作的性能。通过随时间推移分析指标,团队可以识别性能瓶颈或效率低下问题,从而优化依赖云存储服务的应用程序和基础设施。

TimescaleDB

  1. 实时物联网数据摄取:使用此插件实时收集和存储来自数千个物联网设备的传感器数据。此设置有助于即时分析,帮助组织监控运营效率并对不断变化的条件做出快速响应。

  2. 云应用程序性能监控:利用此插件将来自分布式云应用程序的详细性能指标馈送到 TimescaleDB 中。此集成支持实时仪表板和警报,使团队能够快速识别和缓解性能瓶颈。

  3. 历史数据分析和报告:实施一个系统,将长期指标存储在 TimescaleDB 中以进行全面的历史分析。这种方法使企业能够执行趋势分析、生成详细报告并根据存档的时序数据做出数据驱动的决策。

  4. 自适应警报和异常检测:将此插件与自动异常检测工作流程集成。通过将指标持续流式传输到 TimescaleDB,机器学习模型可以分析数据模式并在发生异常时触发警报,从而提高系统可靠性和主动维护能力。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都会更有价值。通过 InfluxDB,这个排名第一的时序平台,与 Telegraf 一起构建以实现扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成