Google Cloud Storage 和 Elasticsearch 集成

通过简单易用的集成获得强大的性能,该集成由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑Google Cloud Storage 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,这是 #1 的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Google Cloud Storage 插件从指定的 Google Cloud Storage 存储桶收集指标,从而深入了解存储使用情况和性能。

Telegraf Elasticsearch 插件无缝地将指标发送到 Elasticsearch 服务器。该插件处理模板创建和动态索引管理,并支持各种特定于 Elasticsearch 的功能,以确保数据格式正确,以便存储和检索。

集成详情

Google Cloud Storage

Google Cloud Storage Telegraf 插件支持从指定的 Google Cloud Storage 存储桶收集指标。随着组织越来越依赖云存储解决方案进行数据管理,监控这些资源的性能和利用率的能力变得至关重要。此插件对于跟踪存储使用情况、了解数据模式以及确保运营效率特别有用。通过与 Google Cloud Storage API 集成,它允许用户从其云环境中收集见解,将指标直接馈送到监控系统中以进行进一步分析。该插件支持各种配置选项,使用户能够根据其特定需求自定义数据收集过程。

Elasticsearch

此插件将指标写入 Elasticsearch,这是一个分布式 RESTful 搜索和分析引擎,能够近乎实时地存储大量数据。它旨在处理 Elasticsearch 5.x 到 7.x 版本,并利用其动态模板功能来正确管理数据类型映射。该插件支持高级功能,例如模板管理、动态索引命名以及与 OpenSearch 的集成。它还允许配置 Elasticsearch 节点的身份验证和运行状况监控。

配置

Google Cloud Storage

[[inputs.google_cloud_storage]]
  bucket = "my-bucket"
  # key_prefix = "my-bucket"
  offset_key = "offset_key"
  objects_per_iteration = 10
  data_format = "influx"
  # credentials_file = "path/to/my/creds.json"

Elasticsearch


[[outputs.elasticsearch]]
  ## The full HTTP endpoint URL for your Elasticsearch instance
  ## Multiple urls can be specified as part of the same cluster,
  ## this means that only ONE of the urls will be written to each interval
  urls = [ "http://node1.es.example.com:9200" ] # required.
  ## Elasticsearch client timeout, defaults to "5s" if not set.
  timeout = "5s"
  ## Set to true to ask Elasticsearch a list of all cluster nodes,
  ## thus it is not necessary to list all nodes in the urls config option
  enable_sniffer = false
  ## Set to true to enable gzip compression
  enable_gzip = false
  ## Set the interval to check if the Elasticsearch nodes are available
  ## Setting to "0s" will disable the health check (not recommended in production)
  health_check_interval = "10s"
  ## Set the timeout for periodic health checks.
  # health_check_timeout = "1s"
  ## HTTP basic authentication details.
  ## HTTP basic authentication details
  # username = "telegraf"
  # password = "mypassword"
  ## HTTP bearer token authentication details
  # auth_bearer_token = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9"

  ## Index Config
  ## The target index for metrics (Elasticsearch will create if it not exists).
  ## You can use the date specifiers below to create indexes per time frame.
  ## The metric timestamp will be used to decide the destination index name
  # %Y - year (2016)
  # %y - last two digits of year (00..99)
  # %m - month (01..12)
  # %d - day of month (e.g., 01)
  # %H - hour (00..23)
  # %V - week of the year (ISO week) (01..53)
  ## Additionally, you can specify a tag name using the notation {{tag_name}}
  ## which will be used as part of the index name. If the tag does not exist,
  ## the default tag value will be used.
  # index_name = "telegraf-{{host}}-%Y.%m.%d"
  # default_tag_value = "none"
  index_name = "telegraf-%Y.%m.%d" # required.

  ## Optional Index Config
  ## Set to true if Telegraf should use the "create" OpType while indexing
  # use_optype_create = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Template Config
  ## Set to true if you want telegraf to manage its index template.
  ## If enabled it will create a recommended index template for telegraf indexes
  manage_template = true
  ## The template name used for telegraf indexes
  template_name = "telegraf"
  ## Set to true if you want telegraf to overwrite an existing template
  overwrite_template = false
  ## If set to true a unique ID hash will be sent as sha256(concat(timestamp,measurement,series-hash)) string
  ## it will enable data resend and update metric points avoiding duplicated metrics with different id's
  force_document_id = false

  ## Specifies the handling of NaN and Inf values.
  ## This option can have the following values:
  ##    none    -- do not modify field-values (default); will produce an error if NaNs or infs are encountered
  ##    drop    -- drop fields containing NaNs or infs
  ##    replace -- replace with the value in "float_replacement_value" (default: 0.0)
  ##               NaNs and inf will be replaced with the given number, -inf with the negative of that number
  # float_handling = "none"
  # float_replacement_value = 0.0

  ## Pipeline Config
  ## To use a ingest pipeline, set this to the name of the pipeline you want to use.
  # use_pipeline = "my_pipeline"
  ## Additionally, you can specify a tag name using the notation {{tag_name}}
  ## which will be used as part of the pipeline name. If the tag does not exist,
  ## the default pipeline will be used as the pipeline. If no default pipeline is set,
  ## no pipeline is used for the metric.
  # use_pipeline = "{{es_pipeline}}"
  # default_pipeline = "my_pipeline"
  #
  # Custom HTTP headers
  # To pass custom HTTP headers please define it in a given below section
  # [outputs.elasticsearch.headers]
  #    "X-Custom-Header" = "custom-value"

  ## Template Index Settings
  ## Overrides the template settings.index section with any provided options.
  ## Defaults provided here in the config
  # template_index_settings = {
  #   refresh_interval = "10s",
  #   mapping.total_fields.limit = 5000,
  #   auto_expand_replicas = "0-1",
  #   codec = "best_compression"
  # }

输入和输出集成示例

Google Cloud Storage

  1. 自动化备份监控:利用 Google Cloud Storage 插件定期监控存储在 Cloud Storage 存储桶中的备份文件的状态。通过配置插件来跟踪文件指标,组织可以自动发出警报,以防备份大小偏离预期模式,从而确保数据保护流程正常运行并及时解决任何异常。

  2. 成本优化洞察:将此插件集成到成本管理工具中,以分析 Cloud Storage 的使用模式。通过收集有关文件大小和访问频率的指标,团队可以优化其存储解决方案,并就数据保留策略做出明智的决策,从而可能降低不必要的存储成本并改进资源分配。

  3. 合规性和审计:使用该插件生成有助于验证 Google Cloud Storage 中存储数据的合规性的指标。通过提供对数据访问和存储使用情况的详细见解,组织可以确保遵守法规要求,从而帮助进行审计并符合数据治理的最佳实践。

  4. 性能基准测试:部署该插件以对 Google Cloud Storage 中数据检索和存储操作的性能进行基准测试。通过分析一段时间内的指标,团队可以识别性能瓶颈或效率低下之处,从而优化依赖云存储服务的应用程序和基础设施。

Elasticsearch

  1. 基于时间的索引:使用此插件将指标存储在 Elasticsearch 中,以根据收集时间为每个指标编制索引。例如,CPU 指标可以存储在名为 telegraf-2023.01.01 的每日索引中,从而实现轻松的基于时间的查询和保留策略。

  2. 动态模板管理:利用模板管理功能自动创建针对您的指标量身定制的自定义模板。这允许您定义如何索引和分析不同的字段,而无需手动配置 Elasticsearch,从而确保用于查询的最佳数据结构。

  3. OpenSearch 兼容性:如果您正在使用 AWS OpenSearch,则可以通过激活兼容模式来配置此插件以无缝工作,从而确保您现有的 Elasticsearch 客户端保持功能正常并与较新的集群设置兼容。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,这是 #1 的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成