谷歌云存储和 Clickhouse 集成

由 InfluxData 构建的开源数据连接器 Telegraf 提供支持,集成简易,性能强大。

info

这不是大规模实时查询的推荐配置。为了获得查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Google Cloud Storage 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

性能强大,规模无限

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Google Cloud Storage 插件从指定的 Google Cloud Storage 存储桶收集指标,从而深入了解存储使用情况和性能。

Telegraf 的 SQL 插件使用简单的表架构和动态列生成,将收集的指标发送到 SQL 数据库。当配置为 ClickHouse 时,它会调整 DSN 格式和类型转换设置,以确保无缝数据集成。

集成详情

Google Cloud Storage

Google Cloud Storage Telegraf 插件可以从指定的 Google Cloud Storage 存储桶中收集指标。随着组织越来越依赖云存储解决方案进行数据管理,监控这些资源的性能和利用率的能力变得至关重要。此插件特别适用于跟踪存储使用方式、了解数据模式以及确保运营效率。通过与 Google Cloud Storage API 集成,它允许用户从其云环境中收集见解,并将指标直接馈送到监控系统以进行进一步分析。该插件支持各种配置选项,使用户可以根据其特定需求自定义数据收集过程。

Clickhouse

Telegraf 的 SQL 插件旨在通过根据传入的指标动态创建表和列,将指标数据写入 SQL 数据库。当配置为 ClickHouse 时,它使用 clickhouse-go v1.5.4 驱动程序,该驱动程序采用独特的 DSN 格式和一组专门的类型转换规则,将 Telegraf 的数据类型直接映射到 ClickHouse 的原生类型。这种方法确保了在高吞吐量环境中的最佳存储和检索性能,使其非常适合实时分析和大规模数据仓库。动态模式创建和精确的类型映射实现了详细的时序数据日志记录,这对于监控现代分布式系统至关重要。

配置

Google Cloud Storage

[[inputs.google_cloud_storage]]
  bucket = "my-bucket"
  # key_prefix = "my-bucket"
  offset_key = "offset_key"
  objects_per_iteration = 10
  data_format = "influx"
  # credentials_file = "path/to/my/creds.json"

Clickhouse

[[outputs.sql]]
  ## Database driver
  ## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
  driver = "clickhouse"

  ## Data source name
  ## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
  ## Example DSN: "tcp://localhost:9000?debug=true"
  data_source_name = "tcp://localhost:9000?debug=true"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion for ClickHouse.
  ## The conversion maps Telegraf metric types to ClickHouse native data types.
  [outputs.sql.convert]
    conversion_style = "literal"
    integer          = "Int64"
    text             = "String"
    timestamp        = "DateTime"
    defaultvalue     = "String"
    unsigned         = "UInt64"
    bool             = "UInt8"
    real             = "Float64"

输入和输出集成示例

Google Cloud Storage

  1. 自动化备份监控:利用 Google Cloud Storage 插件定期监控存储在云存储桶中的备份文件的状态。通过配置插件以跟踪文件指标,组织可以自动发出警报,以防备份大小偏离预期模式,从而确保数据保护流程正常运行并及时解决任何异常。

  2. 成本优化洞察:将此插件集成到成本管理工具中,以分析云存储的使用模式。通过收集文件大小和访问频率的指标,团队可以优化其存储解决方案,并就数据保留策略做出明智的决策,从而可能降低不必要的存储成本并改进资源分配。

  3. 合规性和审计:使用此插件生成有助于验证存储在 Google Cloud Storage 中的数据是否合规的指标。通过提供有关数据访问和存储使用情况的详细见解,组织可以确保遵守法规要求,从而有助于审计并符合数据治理的最佳实践。

  4. 性能基准测试:部署此插件以测试 Google Cloud Storage 中数据检索和存储操作的性能。通过分析一段时间内的指标,团队可以识别性能瓶颈或效率低下问题,从而优化依赖云存储服务的应用程序和基础设施。

Clickhouse

  1. 大容量数据的实时分析:使用此插件将来自大规模系统的流式指标馈送到 ClickHouse。此设置支持超快的查询性能和近乎实时的分析,非常适合监控高流量应用程序。

  2. 时序数据仓库:将此插件与 ClickHouse 集成,以创建强大的时序数据仓库。此用例允许组织存储详细的历史指标并执行复杂的查询,以进行趋势分析和容量规划。

  3. 分布式环境中的可扩展监控:利用此插件在 ClickHouse 中为每种指标类型动态创建表,从而更轻松地管理和查询来自大量分布式系统的数据,而无需预先定义模式。

  4. 针对 IoT 部署的优化存储:部署此插件以将来自 IoT 传感器的数据摄取到 ClickHouse 中。其高效的模式创建和原生类型映射有助于处理海量数据,从而实现实时监控和预测性维护。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

性能强大,规模无限

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成