Google Cloud PubSub 和 MariaDB 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

这不是实时大规模查询的推荐配置。为了实现查询和压缩优化、高速摄取和高可用性,您可能需要考虑Google Cloud PubSub 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件从 Google Cloud PubSub 摄取指标,从而实现实时数据处理和集成到监控设置中。

此插件使用参数化的 SQL INSERT 语句将指标从 Telegraf 直接写入 MariaDB,从而提供了一种将指标存储在结构化关系表中的灵活方式。

集成详情

Google Cloud PubSub

Google Cloud PubSub 输入插件旨在从 Google Cloud PubSub 摄取指标,Google Cloud PubSub 是一种消息传递服务,可促进不同系统之间的实时通信。它允许用户通过从 Google Cloud 项目中的指定订阅中拉取消息来创建和处理指标。此插件的关键功能之一是它能够作为服务输入运行,主动侦听传入消息,而不是仅按设定的时间间隔轮询指标。通过各种配置选项,用户可以自定义消息摄取的行为,例如处理凭据、管理消息大小以及调整确认设置,以确保仅在成功处理后才确认消息。通过利用 Google PubSub 的优势,此插件与云原生架构无缝集成,使用户能够构建强大且可扩展的应用程序,这些应用程序可以实时响应事件。

MariaDB

Telegraf 中的 SQL 输出插件支持通过执行参数化的 SQL 语句将指标直接写入 SQL 兼容数据库(如 MariaDB)。凭借对 MySQL 驱动程序的支持,该插件与 MariaDB 无缝集成,以实现可靠的结构化指标存储。对于喜欢基于 SQL 的分析或希望将指标与业务数据一起存储以进行统一查询的用户来说,此设置是理想的选择。MariaDB 是 MySQL 的一个社区开发的、企业级的分支,强调性能、安全性​​和开放性。该插件支持将时间序列指标插入到自定义架构中,从而可以使用 SQL 连接器灵活地进行分析并与 Metabase 或 Grafana 等 BI 工具集成。

配置

Google Cloud PubSub

[[inputs.cloud_pubsub]]
  project = "my-project"
  subscription = "my-subscription"
  data_format = "influx"
  # credentials_file = "path/to/my/creds.json"
  # retry_delay_seconds = 5
  # max_message_len = 1000000
  # max_undelivered_messages = 1000
  # max_extension = 0
  # max_outstanding_messages = 0
  # max_outstanding_bytes = 0
  # max_receiver_go_routines = 0
  # base64_data = false
  # content_encoding = "identity"
  # max_decompression_size = "500MB"

MariaDB

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ##  sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
  driver = "mysql"

  ## Data source name
  ## The format of the data source name is different for each database driver.
  ## See the plugin readme for details.
  data_source_name = "username:password@tcp(host:port)/dbname"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS} - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE}({COLUMNS})"

  ## SQL INSERT statement with placeholders. Telegraf will substitute values at runtime.
  ## table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - tablename as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL
  init_sql = "SET sql_mode='ANSI_QUOTES';"

  ## Maximum amount of time a connection may be idle. "0s" means connections are
  ## never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections
  ## are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of the
  ## table

  ## Metric type to SQL type conversion
  ## The values on the left are the data types Telegraf has and the values on
  ## the right are the data types Telegraf will use when sending to a database.
  ##
  ## The database values used must be data types the destination database
  ## understands. It is up to the user to ensure that the selected data type is
  ## available in the database they are using. Refer to your database
  ## documentation for what data types are available and supported.
  #[outputs.sql.convert]
  #  integer              = "INT"
  #  real                 = "DOUBLE"
  #  text                 = "TEXT"
  #  timestamp            = "TIMESTAMP"
  #  defaultvalue         = "TEXT"
  #  unsigned             = "UNSIGNED"
  #  bool                 = "BOOL"
  #  ## This setting controls the behavior of the unsigned value. By default the
  #  ## setting will take the integer value and append the unsigned value to it. The other
  #  ## option is "literal", which will use the actual value the user provides to
  #  ## the unsigned option. This is useful for a database like ClickHouse where
  #  ## the unsigned value should use a value like "uint64".
  #  # conversion_style = "unsigned_suffix"

输入和输出集成示例

Google Cloud PubSub

  1. 物联网设备的实时分析:利用 Google Cloud PubSub 插件来聚合来自分散在各个位置的物联网设备的指标。通过将来自设备的数据流式传输到 Google PubSub 并使用此插件来摄取指标,组织可以创建一个集中式仪表板,用于实时监控和警报。此设置可以立即深入了解设备性能,从而促进主动维护和运营效率。

  2. 动态日志处理和监控:通过 Google Cloud PubSub 将来自众多来源的日志摄取到 Telegraf 管道中,利用该插件来解析和分析日志消息。这可以帮助团队快速识别日志中的异常或模式,并简化跨分布式系统的问题故障排除过程。通过整合日志数据,组织可以增强其可观察性和响应能力。

  3. 事件驱动的工作流集成:使用 Google Cloud PubSub 插件来连接各种云函数或服务。每次有新消息推送到订阅时,都可以在云架构的其他部分触发操作,例如启动数据处理作业、通知,甚至更新报告。这种事件驱动的方法允许构建更具反应性的系统架构,该架构可以适应不断变化的业务需求。

MariaDB

  1. 商业智能集成:将应用程序性能指标直接存储到 MariaDB 中,并将其连接到 Metabase 或 Apache Superset 等 BI 工具。此设置允许将运营数据与业务 KPI 混合,以实现统一的仪表板,从而提高跨部门的可见性。

  2. 符合历史指标的合规性报告:使用此插件将指标记录到 MariaDB 中,以用于审计和合规性用例。关系模型支持使用带时间戳的条目精确查询过去的绩效指标,从而支持法规文档。

  3. 基于 SQL 逻辑的自定义警报:将指标插入 MariaDB 并使用自定义 SQL 查询来定义警报阈值或条件。与 cron 作业或计划脚本结合使用,可以实现传统指标平台无法实现的高级警报工作流。

  4. 物联网传感器指标存储:通过 Telegraf 收集来自物联网设备的传感器数据,并使用规范化架构将其存储在 MariaDB 中。这种方法具有成本效益,并且可以很好地与现有的基于 SQL 的系统集成,以进行实时或历史分析。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成