Fluentd 和 TimescaleDB 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Fluentd 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 的下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理大量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Fluentd 输入插件从 Fluentd 的 in_monitor 插件端点收集指标。它提供对各种插件指标的洞察,同时允许自定义配置以减少序列基数。

此输出插件为将 Telegraf 收集的指标直接路由到 TimescaleDB 提供了一种可靠高效的机制。通过利用 PostgreSQL 强大的生态系统以及 TimescaleDB 的时间序列优化,它支持高性能数据摄取和高级查询功能。

集成详情

Fluentd

此插件从 in_monitor 插件提供的 Fluentd 插件端点收集指标。它从 /api/plugin.json 资源读取数据,并允许根据插件类型排除特定插件。

TimescaleDB

TimescaleDB 是一个开源时间序列数据库,构建为 PostgreSQL 的扩展,旨在高效处理大规模、面向时间的数据。TimescaleDB 于 2017 年推出,是为了响应对强大、可扩展的解决方案日益增长的需求而出现的,该解决方案可以管理海量数据,并具有高插入速率和复杂查询。通过利用 PostgreSQL 熟悉的 SQL 接口并通过专门的时间序列功能对其进行增强,TimescaleDB 迅速在希望将时间序列功能集成到现有关系数据库中的开发人员中流行起来。它的混合方法允许用户受益于 PostgreSQL 的灵活性、可靠性和生态系统,同时为时间序列数据提供优化的性能。

该数据库在需要快速摄取数据点并结合对历史时期的复杂分析查询的环境中尤其有效。TimescaleDB 具有许多创新功能,例如将数据透明地分区为可管理块的超表和内置的连续聚合。这些功能可以显着提高查询速度和资源效率。

配置

Fluentd

[[inputs.fluentd]]
  ## This plugin reads information exposed by fluentd (using /api/plugins.json endpoint).
  ##
  ## Endpoint:
  ## - only one URI is allowed
  ## - https is not supported
  endpoint = "http://localhost:24220/api/plugins.json"

  ## Define which plugins have to be excluded (based on "type" field - e.g. monitor_agent)
  exclude = [
    "monitor_agent",
    "dummy",
  ]

TimescaleDB

# Publishes metrics to a TimescaleDB database
[[outputs.postgresql]]
  ## Specify connection address via the standard libpq connection string:
  ##   host=... user=... password=... sslmode=... dbname=...
  ## Or a URL:
  ##   postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
  ## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
  ##
  ## All connection parameters are optional. Environment vars are also supported.
  ## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
  ## All supported vars can be found here:
  ##  https://postgresql.ac.cn/docs/current/libpq-envars.html
  ##
  ## Non-standard parameters:
  ##   pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
  ##   pool_min_conns (default: 0) - Minimum size of connection pool.
  ##   pool_max_conn_lifetime (default: 0s) - Maximum connection age before closing.
  ##   pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
  ##   pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
  # connection = ""

  ## Postgres schema to use.
  # schema = "public"

  ## Store tags as foreign keys in the metrics table. Default is false.
  # tags_as_foreign_keys = false

  ## Suffix to append to table name (measurement name) for the foreign tag table.
  # tag_table_suffix = "_tag"

  ## Deny inserting metrics if the foreign tag can't be inserted.
  # foreign_tag_constraint = false

  ## Store all tags as a JSONB object in a single 'tags' column.
  # tags_as_jsonb = false

  ## Store all fields as a JSONB object in a single 'fields' column.
  # fields_as_jsonb = false

  ## Name of the timestamp column
  ## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
  # timestamp_column_name = "time"

  ## Type of the timestamp column
  ## Currently, "timestamp without time zone" and "timestamp with time zone"
  ## are supported
  # timestamp_column_type = "timestamp without time zone"

  ## Templated statements to execute when creating a new table.
  # create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }})''',
  # ]

  ## Templated statements to execute when adding columns to a table.
  ## Set to an empty list to disable. Points containing tags for which there is
  ## no column will be skipped. Points containing fields for which there is no
  ## column will have the field omitted.
  # add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## Templated statements to execute when creating a new tag table.
  # tag_table_create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
  # ]

  ## Templated statements to execute when adding columns to a tag table.
  ## Set to an empty list to disable. Points containing tags for which there is
  ## no column will be skipped.
  # tag_table_add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## The postgres data type to use for storing unsigned 64-bit integer values
  ## (Postgres does not have a native unsigned 64-bit integer type).
  ## The value can be one of:
  ##   numeric - Uses the PostgreSQL "numeric" data type.
  ##   uint8 - Requires pguint extension (https://github.com/petere/pguint)
  # uint64_type = "numeric"

  ## When using pool_max_conns > 1, and a temporary error occurs, the query is
  ## retried with an incremental backoff. This controls the maximum duration.
  # retry_max_backoff = "15s"

  ## Approximate number of tag IDs to store in in-memory cache (when using
  ## tags_as_foreign_keys). This is an optimization to skip inserting known
  ## tag IDs. Each entry consumes approximately 34 bytes of memory.
  # tag_cache_size = 100000

  ## Cut column names at the given length to not exceed PostgreSQL's
  ## 'identifier length' limit (default: no limit)
  ## (see https://postgresql.ac.cn/docs/current/limits.html)
  ## Be careful to not create duplicate column names!
  # column_name_length_limit = 0

  ## Enable & set the log level for the Postgres driver.
  # log_level = "warn" # trace, debug, info, warn, error, none

输入和输出集成示例

Fluentd

  1. 基本配置:设置 Fluentd 输入插件以从 Fluentd 实例的监控端点收集指标,确保您能够跟踪性能和使用情况统计信息。
  2. 排除插件:使用 exclude 选项忽略监控需求不必要的特定插件指标,从而简化数据收集并专注于重要事项。
  3. 自定义插件 ID:在 Fluentd 配置中实现 @id 参数以保持一致的 plugin_id,这有助于避免频繁重启期间出现高序列基数问题。

TimescaleDB

  1. 实时物联网数据摄取:使用插件实时收集和存储来自数千个物联网设备的传感器数据。此设置有助于即时分析,帮助组织监控运营效率并快速响应不断变化的条件。

  2. 云应用程序性能监控:利用插件将来自分布式云应用程序的详细性能指标馈送到 TimescaleDB。此集成支持实时仪表板和警报,使团队能够快速识别和缓解性能瓶颈。

  3. 历史数据分析和报告:实施一个系统,将长期指标存储在 TimescaleDB 中以进行全面的历史分析。这种方法允许企业执行趋势分析、生成详细报告并根据存档的时间序列数据做出数据驱动的决策。

  4. 自适应警报和异常检测:将插件与自动异常检测工作流程集成。通过将指标持续流式传输到 TimescaleDB,机器学习模型可以分析数据模式并在发生异常时触发警报,从而提高系统可靠性和主动维护。

反馈

感谢您成为我们社区的一份子!如果您对这些页面有任何一般性反馈或发现任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理大量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成