Fluentd 和 Mimir 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

对于大规模实时查询,这不是推荐的配置。 为了优化查询和压缩、高速摄取和高可用性,您可能需要考虑 Fluentd 和 InfluxDB 集成

50亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它都更有价值。 InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Fluentd 输入插件从 Fluentd 的 in_monitor 插件端点收集指标。 它提供对各种插件指标的深入了解,同时允许自定义配置以减少序列基数。

此插件使用 HTTP 将 Telegraf 指标直接发送到 Grafana Mimir 数据库,为 Prometheus 兼容的指标提供可扩展且高效的长期存储和分析。

集成细节

Fluentd

此插件从 in_monitor 插件提供的 Fluentd 插件端点收集指标。 它从 /api/plugin.json 资源读取数据,并允许根据插件类型排除特定插件。

Mimir

Grafana Mimir 支持 Prometheus Remote Write 协议,使 Telegraf 收集的指标能够高效地摄取到 Mimir 集群中,以实现大规模、长期存储。 此集成利用 Prometheus 成熟的标准,使用户能够将 Telegraf 广泛的数据收集功能与 Mimir 的高级功能结合起来,例如查询联盟、多租户、高可用性和经济高效的存储。 Grafana Mimir 的架构经过优化,可处理大量指标数据并提供快速查询响应,使其成为复杂监控环境和分布式系统的理想选择。

配置

Fluentd

[[inputs.fluentd]]
  ## This plugin reads information exposed by fluentd (using /api/plugins.json endpoint).
  ##
  ## Endpoint:
  ## - only one URI is allowed
  ## - https is not supported
  endpoint = "http://localhost:24220/api/plugins.json"

  ## Define which plugins have to be excluded (based on "type" field - e.g. monitor_agent)
  exclude = [
    "monitor_agent",
    "dummy",
  ]

Mimir

[[outputs.http]]
  url = "http://data-load-balancer-backend-1:9009/api/v1/push"
  data_format = "prometheusremotewrite"
  username = "*****"
  password = "******"
  [outputs.http.headers]
     Content-Type = "application/x-protobuf"
     Content-Encoding = "snappy"
     X-Scope-OrgID = "****"

输入和输出集成示例

Fluentd

  1. 基本配置:设置 Fluentd 输入插件以从 Fluentd 实例的监控端点收集指标,确保您能够跟踪性能和使用情况统计信息。
  2. 排除插件:使用 exclude 选项忽略对监控需求不必要的特定插件的指标,从而简化数据收集并专注于重要事项。
  3. 自定义插件 ID:在 Fluentd 配置中实现 @id 参数以保持一致的 plugin_id,这有助于避免频繁重启期间出现高序列基数的问题。

Mimir

  1. 企业级 Kubernetes 监控:将 Telegraf 与 Grafana Mimir 集成,以企业级规模从 Kubernetes 集群流式传输指标。 这实现了全面的可见性、改进的资源分配以及跨数百个集群的主动故障排除,利用 Mimir 的横向可扩展性和高可用性。

  2. 多租户 SaaS 应用程序可观测性:使用此插件将来自不同 SaaS 租户的指标集中到 Grafana Mimir 中,从而实现租户隔离和基于资源使用情况的准确计费。 这种方法提供可靠的可观测性、高效的成本管理和安全的多租户支持。

  3. 全球边缘网络性能跟踪:将来自全球分布式边缘服务器的延迟和可用性指标流式传输到 Grafana Mimir 中。 组织可以快速识别性能下降或中断,利用 Mimir 的快速查询功能来确保最佳的服务可靠性和用户体验。

  4. 高容量微服务实时分析:在高容量微服务架构中实施 Telegraf 指标收集,将数据馈送到 Grafana Mimir 以进行实时分析和异常检测。 Mimir 强大的查询功能使团队能够检测异常并快速响应,从而保持高服务可用性和性能。

反馈

感谢您成为我们社区的一员! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它都更有价值。 InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成