目录
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法
输入和输出集成概述
Fluentd Input 插件从 Fluentd 的 in_monitor 插件端点收集指标。它提供对各种插件指标的洞察,同时允许自定义配置以减少序列基数。
Telegraf 的 SQL 插件使用简单的表模式和动态列生成,将收集的指标发送到 SQL 数据库。当配置为 ClickHouse 时,它会调整 DSN 格式和类型转换设置,以确保无缝数据集成。
集成详情
Fluentd
此插件从 in_monitor 插件提供的 Fluentd 插件端点收集指标。它从 /api/plugin.json 资源读取数据,并允许根据插件类型排除特定插件。
Clickhouse
Telegraf 的 SQL 插件旨在通过基于传入指标动态创建表和列,将指标数据写入 SQL 数据库。当配置为 ClickHouse 时,它使用 clickhouse-go v1.5.4 驱动程序,该驱动程序采用独特的 DSN 格式和一组专门的类型转换规则,将 Telegraf 的数据类型直接映射到 ClickHouse 的原生类型。这种方法确保了在高吞吐量环境中的最佳存储和检索性能,使其非常适合实时分析和大规模数据仓库。动态模式创建和精确的类型映射实现了详细的时间序列数据日志记录,这对于监控现代分布式系统至关重要。
配置
Fluentd
[[inputs.fluentd]]
## This plugin reads information exposed by fluentd (using /api/plugins.json endpoint).
##
## Endpoint:
## - only one URI is allowed
## - https is not supported
endpoint = "http://localhost:24220/api/plugins.json"
## Define which plugins have to be excluded (based on "type" field - e.g. monitor_agent)
exclude = [
"monitor_agent",
"dummy",
]
Clickhouse
[[outputs.sql]]
## Database driver
## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
driver = "clickhouse"
## Data source name
## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
## Example DSN: "tcp://localhost:9000?debug=true"
data_source_name = "tcp://localhost:9000?debug=true"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion for ClickHouse.
## The conversion maps Telegraf metric types to ClickHouse native data types.
[outputs.sql.convert]
conversion_style = "literal"
integer = "Int64"
text = "String"
timestamp = "DateTime"
defaultvalue = "String"
unsigned = "UInt64"
bool = "UInt8"
real = "Float64"
输入和输出集成示例
Fluentd
- 基本配置:设置 Fluentd Input 插件以从 Fluentd 实例的监控端点收集指标,确保您能够跟踪性能和使用情况统计信息。
- 排除插件:使用
exclude
选项忽略对您的监控需求不必要的特定插件指标,从而简化数据收集并专注于重要事项。 - 自定义插件 ID:在您的 Fluentd 配置中实现
@id
参数以保持一致的plugin_id
,这有助于避免频繁重启期间的高序列基数问题。
Clickhouse
-
高容量数据的实时分析:使用该插件将来自大规模系统的流式指标馈送到 ClickHouse。此设置支持超快的查询性能和近乎实时的分析,非常适合监控高流量应用程序。
-
时间序列数据仓库:将该插件与 ClickHouse 集成以创建强大的时间序列数据仓库。此用例允许组织存储详细的历史指标,并执行复杂的查询以进行趋势分析和容量规划。
-
分布式环境中的可扩展监控:利用该插件在 ClickHouse 中为每种指标类型动态创建表,从而更轻松地管理和查询来自大量分布式系统的数据,而无需预先定义模式。
-
物联网部署的优化存储:部署该插件以将来自物联网传感器的数据摄取到 ClickHouse 中。其高效的模式创建和原生类型映射有助于处理海量数据,从而实现实时监控和预测性维护。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法