目录
输入和输出集成概述
Fluentd 输入插件从 Fluentd 的 in_monitor 插件端点收集指标。它提供对各种插件指标的深入了解,同时允许自定义配置以减少序列基数。
Google BigQuery 插件允许 Telegraf 将指标写入 Google Cloud BigQuery,从而为遥测数据实现强大的数据分析功能。
集成详情
Fluentd
此插件从 in_monitor 插件提供的 Fluentd 插件端点收集指标。它从 /api/plugin.json 资源读取数据,并允许根据插件类型排除特定插件。
Google BigQuery
Telegraf 的 Google BigQuery 插件实现了与 Google Cloud 的 BigQuery 服务的无缝集成,BigQuery 服务是一个流行的数据仓库和分析平台。此插件有助于将 Telegraf 收集的指标传输到 BigQuery 数据集中,使用户可以更轻松地执行分析并从其遥测数据中生成见解。它需要通过服务帐户或用户凭据进行身份验证,并且旨在处理各种数据类型,确保用户在将指标存储在 BigQuery 表中时可以保持指标的完整性和准确性。配置选项允许围绕数据集规范和处理指标进行自定义,包括管理指标名称中的连字符,BigQuery 的流式插入不支持连字符。对于利用 BigQuery 的可扩展性和强大查询功能来分析大量监控数据的组织来说,此插件特别有用。
配置
Fluentd
[[inputs.fluentd]]
## This plugin reads information exposed by fluentd (using /api/plugins.json endpoint).
##
## Endpoint:
## - only one URI is allowed
## - https is not supported
endpoint = "http://localhost:24220/api/plugins.json"
## Define which plugins have to be excluded (based on "type" field - e.g. monitor_agent)
exclude = [
"monitor_agent",
"dummy",
]
Google BigQuery
# Configuration for Google Cloud BigQuery to send entries
[[outputs.bigquery]]
## Credentials File
credentials_file = "/path/to/service/account/key.json"
## Google Cloud Platform Project
# project = ""
## The namespace for the metric descriptor
dataset = "telegraf"
## Timeout for BigQuery operations.
# timeout = "5s"
## Character to replace hyphens on Metric name
# replace_hyphen_to = "_"
## Write all metrics in a single compact table
# compact_table = ""
输入和输出集成示例
Fluentd
- 基本配置:设置 Fluentd 输入插件以从 Fluentd 实例的监控端点收集指标,确保您能够跟踪性能和使用情况统计信息。
- 排除插件:使用
exclude
选项忽略特定插件的指标,这些指标对于您的监控需求不是必需的,从而简化数据收集并专注于重要事项。 - 自定义插件 ID:在您的 Fluentd 配置中实现
@id
参数以保持一致的plugin_id
,这有助于避免频繁重启期间出现高序列基数的问题。
Google BigQuery
-
实时分析仪表板:利用 Google BigQuery 插件将实时指标馈送到 Google Cloud 上托管的自定义分析仪表板。此设置将允许团队实时可视化性能数据,从而深入了解系统运行状况和使用模式。通过使用 BigQuery 的查询功能,用户可以轻松创建量身定制的报告和仪表板以满足其特定需求,从而增强决策过程。
-
成本管理和优化分析:利用该插件自动将来自各种服务的成本相关指标发送到 BigQuery。分析这些数据可以帮助企业识别不必要的费用并优化资源使用。通过在 BigQuery 中执行聚合和转换查询,组织可以创建准确的预测并有效地管理其云支出。
-
监控数据上的跨团队协作:使组织内的不同团队能够使用 BigQuery 共享其监控数据。借助此 Telegraf 插件,团队可以将其指标推送到中央 BigQuery 实例,从而促进协作。这种数据共享方法鼓励最佳实践和跨职能意识,从而共同改进系统性能和可靠性。
-
容量规划的历史分析:通过使用 BigQuery 插件,公司可以收集和存储容量规划必不可少的历史指标数据。分析随时间变化的趋势可以帮助预测系统需求并主动扩展基础设施。组织可以创建时序分析并识别可为其长期战略决策提供信息的模式。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。