Azure 事件中心和 Thanos 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。 为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑Azure 事件中心和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都会更有价值。 借助 InfluxDB,这是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Azure 事件中心输入插件允许 Telegraf 从 Azure 事件中心和 Azure IoT 中心消费数据,从而能够高效地处理数据并监控来自这些云服务的事件流。

此插件使用基于 HTTP 的 Prometheus 远程写入协议将指标从 Telegraf 发送到 Thanos,从而可以高效且可扩展地摄取到 Thanos Receive 组件中。

集成详情

Azure 事件中心

此插件充当 Azure 事件中心和 Azure IoT 中心的消费者,允许用户从这些平台高效地摄取数据流。 Azure 事件中心是一个高度可扩展的数据流平台和事件摄取服务,能够每秒接收和处理数百万个事件,而 Azure IoT 中心支持物联网应用中安全的设备到云和云到设备通信。 事件中心输入插件与这些服务无缝交互,提供可靠的消息消费和流处理能力。 主要功能包括消费者组的动态管理、防止数据丢失的消息跟踪以及用于预取计数、用户代理和元数据处理的可自定义设置。 此插件旨在支持各种用例,包括实时遥测数据收集、物联网数据处理以及与更广泛的 Azure 生态系统中的各种数据分析和监控工具集成。

Thanos

Telegraf 的 HTTP 插件可以通过其与远程写入兼容的 Receive 组件将指标直接发送到 Thanos。 通过将数据格式设置为 prometheusremotewrite,Telegraf 可以将指标序列化为原生 Prometheus 客户端使用的相同基于 protobuf 的格式。 此设置实现了高吞吐量、低延迟的指标摄取到 Thanos 中,从而促进了大规模的集中式可观测性。 它在混合环境中特别有用,在这些环境中,Telegraf 从 Prometheus 原生范围之外的系统(例如 SNMP 设备、Windows 主机或自定义应用程序)收集指标,并将它们直接流式传输到 Thanos 以进行长期存储和全局查询。

配置

Azure 事件中心

[[inputs.eventhub_consumer]]
  ## The default behavior is to create a new Event Hub client from environment variables.
  ## This requires one of the following sets of environment variables to be set:
  ##
  ## 1) Expected Environment Variables:
  ##    - "EVENTHUB_CONNECTION_STRING"
  ##
  ## 2) Expected Environment Variables:
  ##    - "EVENTHUB_NAMESPACE"
  ##    - "EVENTHUB_NAME"
  ##    - "EVENTHUB_KEY_NAME"
  ##    - "EVENTHUB_KEY_VALUE"

  ## 3) Expected Environment Variables:
  ##    - "EVENTHUB_NAMESPACE"
  ##    - "EVENTHUB_NAME"
  ##    - "AZURE_TENANT_ID"
  ##    - "AZURE_CLIENT_ID"
  ##    - "AZURE_CLIENT_SECRET"

  ## Uncommenting the option below will create an Event Hub client based solely on the connection string.
  ## This can either be the associated environment variable or hard coded directly.
  ## If this option is uncommented, environment variables will be ignored.
  ## Connection string should contain EventHubName (EntityPath)
  # connection_string = ""

  ## Set persistence directory to a valid folder to use a file persister instead of an in-memory persister
  # persistence_dir = ""

  ## Change the default consumer group
  # consumer_group = ""

  ## By default the event hub receives all messages present on the broker, alternative modes can be set below.
  ## The timestamp should be in https://github.com/toml-lang/toml#offset-date-time format (RFC 3339).
  ## The 3 options below only apply if no valid persister is read from memory or file (e.g. first run).
  # from_timestamp =
  # latest = true

  ## Set a custom prefetch count for the receiver(s)
  # prefetch_count = 1000

  ## Add an epoch to the receiver(s)
  # epoch = 0

  ## Change to set a custom user agent, "telegraf" is used by default
  # user_agent = "telegraf"

  ## To consume from a specific partition, set the partition_ids option.
  ## An empty array will result in receiving from all partitions.
  # partition_ids = ["0","1"]

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Set either option below to true to use a system property as timestamp.
  ## You have the choice between EnqueuedTime and IoTHubEnqueuedTime.
  ## It is recommended to use this setting when the data itself has no timestamp.
  # enqueued_time_as_ts = true
  # iot_hub_enqueued_time_as_ts = true

  ## Tags or fields to create from keys present in the application property bag.
  ## These could for example be set by message enrichments in Azure IoT Hub.
  # application_property_tags = []
  # application_property_fields = []

  ## Tag or field name to use for metadata
  ## By default all metadata is disabled
  # sequence_number_field = "SequenceNumber"
  # enqueued_time_field = "EnqueuedTime"
  # offset_field = "Offset"
  # partition_id_tag = "PartitionID"
  # partition_key_tag = "PartitionKey"
  # iot_hub_device_connection_id_tag = "IoTHubDeviceConnectionID"
  # iot_hub_auth_generation_id_tag = "IoTHubAuthGenerationID"
  # iot_hub_connection_auth_method_tag = "IoTHubConnectionAuthMethod"
  # iot_hub_connection_module_id_tag = "IoTHubConnectionModuleID"
  # iot_hub_enqueued_time_field = "IoTHubEnqueuedTime"

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

Thanos

[[outputs.http]]
  ## Thanos Receive endpoint for remote write
  url = "http://thanos-receive.example.com/api/v1/receive"

  ## HTTP method
  method = "POST"

  ## Data format set to Prometheus remote write
  data_format = "prometheusremotewrite"

  ## Optional headers (authorization, etc.)
  # [outputs.http.headers]
  #   Authorization = "Bearer YOUR_TOKEN"

  ## Optional TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

  ## Request timeout
  timeout = "10s"

输入和输出集成示例

Azure 事件中心

  1. 实时物联网设备监控:使用 Azure 事件中心插件监控来自物联网设备(如传感器和执行器)的遥测数据。 通过将设备数据流式传输到监控仪表板,组织可以深入了解系统性能、跟踪使用模式并快速响应异常情况。 此设置允许对设备进行主动管理,从而提高运营效率并减少停机时间。

  2. 事件驱动的数据处理工作流:利用此插件来响应从 Azure 事件中心接收的事件来触发数据处理工作流。 例如,当新事件到达时,它可以启动数据转换、聚合或存储过程,从而使企业能够更有效地自动化其工作流。 这种集成增强了响应能力并简化了跨系统的操作。

  3. 与分析平台集成:实施该插件以将事件数据漏斗到分析平台,如 Azure Synapse 或 Power BI。 通过将实时流数据集成到分析工具中,组织可以执行全面的数据分析,推动商业智能工作,并创建信息丰富的决策交互式可视化。

  4. 跨平台数据同步:利用 Azure 事件中心插件跨不同的系统或平台同步数据流。 通过从 Azure 事件中心消费数据并将其转发到其他系统(如数据库或云存储),组织可以在其整个架构中维护一致且最新的信息,从而实现有凝聚力的数据策略。

Thanos

  1. 无代理云监控:在云虚拟机上部署 Telegraf 代理以收集系统和应用程序指标,然后使用远程写入将它们直接流式传输到 Thanos。 这提供了集中式可观测性,而无需在每个位置都部署 Prometheus 节点。

  2. 可扩展的 Windows 主机监控:在 Windows 机器上使用 Telegraf 收集操作系统级别的指标,并通过远程写入将它们发送到 Thanos Receive。 这实现了跨异构环境的可观测性,而原生 Prometheus 仅在 Linux 上受支持。

  3. 跨区域指标联邦:多个地理区域中的 Telegraf 代理可以使用此插件将数据推送到区域本地 Thanos Receiver。 从那里,Thanos 可以全局去重和查询指标,从而降低延迟和网络出口成本。

  4. 将第三方数据集成到 Thanos 中:使用 Telegraf 输入从自定义遥测源(如 REST API 或专有日志)收集指标,并通过远程写入将它们转发到 Thanos。 这将非原生数据引入到与 Prometheus 兼容的长期分析管道中。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提供意见。 请在InfluxDB 社区 Slack中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都会更有价值。 借助 InfluxDB,这是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并为可靠的消息处理提供带有 DynamoDB 的检查点功能。

查看集成