目录
强大的性能,无限的扩展
收集、组织和处理海量高速数据。 当您将其视为时序数据时,任何数据都更有价值。 借助 InfluxDB,这是第一名的时序平台,旨在通过 Telegraf 进行扩展。
查看入门方法
输入和输出集成概述
Azure Event Hubs 输入插件允许 Telegraf 从 Azure Event Hubs 和 Azure IoT Hub 消费数据,从而能够高效地处理数据并监控来自这些云服务的事件流。
此输出插件通过 HTTP Event Collector 促进将 Telegraf 收集的指标直接流式传输到 Splunk,从而可以轻松地与 Splunk 强大的分析平台集成。
集成详情
Azure Event Hubs
此插件充当 Azure Event Hubs 和 Azure IoT Hub 的消费者,允许用户有效地从这些平台摄取数据流。 Azure Event Hubs 是一个高度可扩展的数据流平台和事件摄取服务,能够每秒接收和处理数百万个事件,而 Azure IoT Hub 支持 IoT 应用程序中安全的设备到云和云到设备通信。 Event Hub 输入插件与这些服务无缝交互,提供可靠的消息消费和流处理功能。 主要功能包括消费者组的动态管理、防止数据丢失的消息跟踪以及用于预取计数、用户代理和元数据处理的可自定义设置。 此插件旨在支持各种用例,包括实时遥测数据收集、IoT 数据处理以及与更广泛的 Azure 生态系统内的各种数据分析和监控工具集成。
Splunk
使用 Telegraf 轻松地从许多不同的来源收集和聚合指标,并将它们发送到 Splunk。 通过使用 HTTP 输出插件和专门的 Splunk 指标序列化器,此配置可确保将数据高效摄取到 Splunk 的指标索引中。 HEC 是 Splunk 提供的一种高级机制,旨在通过 HTTP 或 HTTPS 可靠地大规模收集数据,为安全性、监控和分析工作负载提供关键功能。 Telegraf 与 Splunk HEC 的集成通过利用标准 HTTP 协议、内置身份验证和结构化数据序列化来简化操作,从而优化指标摄取并实现即时可操作的见解。
配置
Azure Event Hubs
[[inputs.eventhub_consumer]]
## The default behavior is to create a new Event Hub client from environment variables.
## This requires one of the following sets of environment variables to be set:
##
## 1) Expected Environment Variables:
## - "EVENTHUB_CONNECTION_STRING"
##
## 2) Expected Environment Variables:
## - "EVENTHUB_NAMESPACE"
## - "EVENTHUB_NAME"
## - "EVENTHUB_KEY_NAME"
## - "EVENTHUB_KEY_VALUE"
## 3) Expected Environment Variables:
## - "EVENTHUB_NAMESPACE"
## - "EVENTHUB_NAME"
## - "AZURE_TENANT_ID"
## - "AZURE_CLIENT_ID"
## - "AZURE_CLIENT_SECRET"
## Uncommenting the option below will create an Event Hub client based solely on the connection string.
## This can either be the associated environment variable or hard coded directly.
## If this option is uncommented, environment variables will be ignored.
## Connection string should contain EventHubName (EntityPath)
# connection_string = ""
## Set persistence directory to a valid folder to use a file persister instead of an in-memory persister
# persistence_dir = ""
## Change the default consumer group
# consumer_group = ""
## By default the event hub receives all messages present on the broker, alternative modes can be set below.
## The timestamp should be in https://github.com/toml-lang/toml#offset-date-time format (RFC 3339).
## The 3 options below only apply if no valid persister is read from memory or file (e.g. first run).
# from_timestamp =
# latest = true
## Set a custom prefetch count for the receiver(s)
# prefetch_count = 1000
## Add an epoch to the receiver(s)
# epoch = 0
## Change to set a custom user agent, "telegraf" is used by default
# user_agent = "telegraf"
## To consume from a specific partition, set the partition_ids option.
## An empty array will result in receiving from all partitions.
# partition_ids = ["0","1"]
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Set either option below to true to use a system property as timestamp.
## You have the choice between EnqueuedTime and IoTHubEnqueuedTime.
## It is recommended to use this setting when the data itself has no timestamp.
# enqueued_time_as_ts = true
# iot_hub_enqueued_time_as_ts = true
## Tags or fields to create from keys present in the application property bag.
## These could for example be set by message enrichments in Azure IoT Hub.
# application_property_tags = []
# application_property_fields = []
## Tag or field name to use for metadata
## By default all metadata is disabled
# sequence_number_field = "SequenceNumber"
# enqueued_time_field = "EnqueuedTime"
# offset_field = "Offset"
# partition_id_tag = "PartitionID"
# partition_key_tag = "PartitionKey"
# iot_hub_device_connection_id_tag = "IoTHubDeviceConnectionID"
# iot_hub_auth_generation_id_tag = "IoTHubAuthGenerationID"
# iot_hub_connection_auth_method_tag = "IoTHubConnectionAuthMethod"
# iot_hub_connection_module_id_tag = "IoTHubConnectionModuleID"
# iot_hub_enqueued_time_field = "IoTHubEnqueuedTime"
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
Splunk
[[outputs.http]]
## Splunk HTTP Event Collector endpoint
url = "https://splunk.example.com:8088/services/collector"
## HTTP method to use
method = "POST"
## Splunk authentication token
headers = {"Authorization" = "Splunk YOUR_SPLUNK_HEC_TOKEN"}
## Serializer for formatting metrics specifically for Splunk
data_format = "splunkmetric"
## Optional parameters
# timeout = "5s"
# insecure_skip_verify = false
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
输入和输出集成示例
Azure Event Hubs
-
实时 IoT 设备监控:使用 Azure Event Hubs 插件监控来自 IoT 设备(如传感器和执行器)的遥测数据。 通过将设备数据流式传输到监控仪表板,组织可以深入了解系统性能、跟踪使用模式并快速响应异常情况。 此设置允许对设备进行主动管理,从而提高运营效率并减少停机时间。
-
事件驱动的数据处理工作流:利用此插件来触发数据处理工作流,以响应从 Azure Event Hubs 收到的事件。 例如,当新事件到达时,它可以启动数据转换、聚合或存储过程,从而使企业能够更有效地自动化其工作流。 这种集成增强了响应能力并简化了跨系统的操作。
-
与分析平台集成:实施该插件以将事件数据导入到分析平台(如 Azure Synapse 或 Power BI)。 通过将实时流数据集成到分析工具中,组织可以执行全面的数据分析、推动商业智能工作并创建信息丰富的交互式可视化效果,从而为决策提供依据。
-
跨平台数据同步:利用 Azure Event Hubs 插件在不同的系统或平台之间同步数据流。 通过从 Azure Event Hubs 消费数据并将其转发到其他系统(如数据库或云存储),组织可以在其整个架构中保持一致且最新的信息,从而实现有凝聚力的数据策略。
Splunk
-
实时安全分析:利用此插件将来自各种应用程序的安全相关指标实时流式传输到 Splunk 中。 组织可以通过关联跨系统的数据流来立即检测威胁,从而显着缩短检测和响应时间。
-
多云基础设施监控:集成 Telegraf 以将来自多云环境的指标直接整合到 Splunk 中,从而实现全面的可见性和运营智能。 这种统一的监控使团队能够快速检测性能问题并简化云资源管理。
-
动态容量规划:部署该插件以将来自容器编排平台(如 Kubernetes)的资源指标持续推送到 Splunk 中。 利用 Splunk 的分析功能,团队可以自动化预测性扩展和资源分配,避免资源瓶颈并最大限度地降低成本。
-
自动化事件响应工作流:将此插件与 Splunk 的警报系统结合使用,以创建自动化事件响应工作流。 Telegraf 收集的指标会触发实时警报和自动化修复脚本,从而确保快速解决问题并保持高系统可用性。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展
收集、组织和处理海量高速数据。 当您将其视为时序数据时,任何数据都更有价值。 借助 InfluxDB,这是第一名的时序平台,旨在通过 Telegraf 进行扩展。
查看入门方法