目录
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会变得更有价值。使用 InfluxDB,这是 #1 的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法
输入和输出集成概述
Azure Event Hubs 输入插件允许 Telegraf 从 Azure Event Hubs 和 Azure IoT Hub 消费数据,从而实现来自这些云服务的事件流的有效数据处理和监控。
Telegraf PostgreSQL 插件允许您高效地将指标写入 PostgreSQL 数据库,同时自动管理数据库架构。
集成详情
Azure Event Hubs
此插件充当 Azure Event Hubs 和 Azure IoT Hub 的消费者,允许用户有效地从这些平台摄取数据流。Azure Event Hubs 是一个高度可扩展的数据流平台和事件摄取服务,能够每秒接收和处理数百万个事件,而 Azure IoT Hub 实现了 IoT 应用中安全的设备到云和云到设备通信。Event Hub 输入插件与这些服务无缝交互,提供可靠的消息消费和流处理能力。主要功能包括消费者组的动态管理、防止数据丢失的消息跟踪以及用于预取计数、用户代理和元数据处理的可自定义设置。此插件旨在支持各种用例,包括实时遥测数据收集、IoT 数据处理以及与更广泛的 Azure 生态系统中的各种数据分析和监控工具集成。
PostgreSQL
PostgreSQL 插件允许用户将指标写入 PostgreSQL 数据库或兼容数据库,通过自动更新缺失列,为架构管理提供强大的支持。该插件旨在促进与监控解决方案的集成,允许用户高效地存储和管理时间序列数据。它为连接设置、并发和错误处理提供了可配置选项,并支持高级功能,例如用于标签和字段的 JSONB 存储、外键标记、模板化架构修改以及通过 pguint 扩展支持无符号整数数据类型。
配置
Azure Event Hubs
[[inputs.eventhub_consumer]]
## The default behavior is to create a new Event Hub client from environment variables.
## This requires one of the following sets of environment variables to be set:
##
## 1) Expected Environment Variables:
## - "EVENTHUB_CONNECTION_STRING"
##
## 2) Expected Environment Variables:
## - "EVENTHUB_NAMESPACE"
## - "EVENTHUB_NAME"
## - "EVENTHUB_KEY_NAME"
## - "EVENTHUB_KEY_VALUE"
## 3) Expected Environment Variables:
## - "EVENTHUB_NAMESPACE"
## - "EVENTHUB_NAME"
## - "AZURE_TENANT_ID"
## - "AZURE_CLIENT_ID"
## - "AZURE_CLIENT_SECRET"
## Uncommenting the option below will create an Event Hub client based solely on the connection string.
## This can either be the associated environment variable or hard coded directly.
## If this option is uncommented, environment variables will be ignored.
## Connection string should contain EventHubName (EntityPath)
# connection_string = ""
## Set persistence directory to a valid folder to use a file persister instead of an in-memory persister
# persistence_dir = ""
## Change the default consumer group
# consumer_group = ""
## By default the event hub receives all messages present on the broker, alternative modes can be set below.
## The timestamp should be in https://github.com/toml-lang/toml#offset-date-time format (RFC 3339).
## The 3 options below only apply if no valid persister is read from memory or file (e.g. first run).
# from_timestamp =
# latest = true
## Set a custom prefetch count for the receiver(s)
# prefetch_count = 1000
## Add an epoch to the receiver(s)
# epoch = 0
## Change to set a custom user agent, "telegraf" is used by default
# user_agent = "telegraf"
## To consume from a specific partition, set the partition_ids option.
## An empty array will result in receiving from all partitions.
# partition_ids = ["0","1"]
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Set either option below to true to use a system property as timestamp.
## You have the choice between EnqueuedTime and IoTHubEnqueuedTime.
## It is recommended to use this setting when the data itself has no timestamp.
# enqueued_time_as_ts = true
# iot_hub_enqueued_time_as_ts = true
## Tags or fields to create from keys present in the application property bag.
## These could for example be set by message enrichments in Azure IoT Hub.
# application_property_tags = []
# application_property_fields = []
## Tag or field name to use for metadata
## By default all metadata is disabled
# sequence_number_field = "SequenceNumber"
# enqueued_time_field = "EnqueuedTime"
# offset_field = "Offset"
# partition_id_tag = "PartitionID"
# partition_key_tag = "PartitionKey"
# iot_hub_device_connection_id_tag = "IoTHubDeviceConnectionID"
# iot_hub_auth_generation_id_tag = "IoTHubAuthGenerationID"
# iot_hub_connection_auth_method_tag = "IoTHubConnectionAuthMethod"
# iot_hub_connection_module_id_tag = "IoTHubConnectionModuleID"
# iot_hub_enqueued_time_field = "IoTHubEnqueuedTime"
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
PostgreSQL
# Publishes metrics to a postgresql database
[[outputs.postgresql]]
## Specify connection address via the standard libpq connection string:
## host=... user=... password=... sslmode=... dbname=...
## Or a URL:
## postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
##
## All connection parameters are optional. Environment vars are also supported.
## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
## All supported vars can be found here:
## https://postgresql.ac.cn/docs/current/libpq-envars.html
##
## Non-standard parameters:
## pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
## pool_min_conns (default: 0) - Minimum size of connection pool.
## pool_max_conn_lifetime (default: 0s) - Maximum age of a connection before closing.
## pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
## pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
# connection = ""
## Postgres schema to use.
# schema = "public"
## Store tags as foreign keys in the metrics table. Default is false.
# tags_as_foreign_keys = false
## Suffix to append to table name (measurement name) for the foreign tag table.
# tag_table_suffix = "_tag"
## Deny inserting metrics if the foreign tag can't be inserted.
# foreign_tag_constraint = false
## Store all tags as a JSONB object in a single 'tags' column.
# tags_as_jsonb = false
## Store all fields as a JSONB object in a single 'fields' column.
# fields_as_jsonb = false
## Name of the timestamp column
## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
# timestamp_column_name = "time"
## Type of the timestamp column
## Currently, "timestamp without time zone" and "timestamp with time zone"
## are supported
# timestamp_column_type = "timestamp without time zone"
## Templated statements to execute when creating a new table.
# create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }})''',
# ]
## Templated statements to execute when adding columns to a table.
## Set to an empty list to disable. Points containing tags for which there is no column will be skipped. Points
## containing fields for which there is no column will have the field omitted.
# add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## Templated statements to execute when creating a new tag table.
# tag_table_create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
# ]
## Templated statements to execute when adding columns to a tag table.
## Set to an empty list to disable. Points containing tags for which there is no column will be skipped.
# tag_table_add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## The postgres data type to use for storing unsigned 64-bit integer values (Postgres does not have a native
## unsigned 64-bit integer type).
## The value can be one of:
## numeric - Uses the PostgreSQL "numeric" data type.
## uint8 - Requires pguint extension (https://github.com/petere/pguint)
# uint64_type = "numeric"
## When using pool_max_conns>1, and a temporary error occurs, the query is retried with an incremental backoff. This
## controls the maximum backoff duration.
# retry_max_backoff = "15s"
## Approximate number of tag IDs to store in in-memory cache (when using tags_as_foreign_keys).
## This is an optimization to skip inserting known tag IDs.
## Each entry consumes approximately 34 bytes of memory.
# tag_cache_size = 100000
## Enable & set the log level for the Postgres driver.
# log_level = "warn" # trace, debug, info, warn, error, none
输入和输出集成示例
Azure Event Hubs
-
实时物联网设备监控:使用 Azure Event Hubs 插件监控来自物联网设备(如传感器和执行器)的遥测数据。通过将设备数据流式传输到监控仪表板,组织可以深入了解系统性能、跟踪使用模式并快速响应异常情况。此设置允许对设备进行主动管理,从而提高运营效率并减少停机时间。
-
事件驱动的数据处理工作流:利用此插件来触发数据处理工作流,以响应从 Azure Event Hubs 收到的事件。例如,当新事件到达时,它可以启动数据转换、聚合或存储过程,使企业能够更有效地自动化其工作流。此集成增强了响应能力并简化了跨系统的运营。
-
与分析平台集成:实施此插件,将事件数据导入到 Azure Synapse 或 Power BI 等分析平台。通过将实时流数据集成到分析工具中,组织可以执行全面的数据分析、推动商业智能工作,并创建交互式可视化效果,为决策提供信息。
-
跨平台数据同步:利用 Azure Event Hubs 插件在不同的系统或平台之间同步数据流。通过从 Azure Event Hubs 消费数据并将其转发到数据库或云存储等其他系统,组织可以在其整个架构中维护一致且最新的信息,从而实现有凝聚力的数据策略。
PostgreSQL
-
使用复杂查询进行实时分析:利用 PostgreSQL 插件将来自各种来源的指标存储在 PostgreSQL 数据库中,从而使用复杂查询实现实时分析。此设置可以帮助数据科学家和分析师发现模式和趋势,因为他们可以在多个表中操作关系数据,同时利用 PostgreSQL 强大的查询优化功能。具体来说,用户可以使用跨不同指标表的 JOIN 操作创建复杂的报告,从而揭示通常在嵌入式系统中仍然隐藏的见解。
-
与 TimescaleDB 集成以进行时间序列数据处理:在 TimescaleDB 实例中使用 PostgreSQL 插件,以高效处理和分析时间序列数据。通过实施超表,用户可以在时间维度上实现更高的性能和主题分区。此集成允许用户对大量时间序列数据运行分析查询,同时保留 PostgreSQL SQL 查询的全部功能,从而确保指标分析的可靠性和效率。
-
数据版本控制和历史分析:实施使用 PostgreSQL 插件的策略,以维护指标随时间变化的不同版本。用户可以设置一个不可变的数据表结构,其中保留旧版本的表,从而可以轻松进行历史分析。这种方法不仅提供了对数据演变的见解,而且还有助于遵守数据保留策略,确保数据集的历史完整性保持不变。
-
用于不断发展的指标的动态架构管理:使用该插件的模板功能来创建动态变化的架构,以响应指标变化。此用例允许组织随着指标的演变而调整其数据结构,添加必要的字段并确保遵守数据完整性策略。通过利用模板化的 SQL 命令,用户可以在无需手动干预的情况下扩展其数据库,从而促进敏捷的数据管理实践。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会变得更有价值。使用 InfluxDB,这是 #1 的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法