目录
输入和输出集成概述
Azure Event Hubs 输入插件允许 Telegraf 从 Azure Event Hubs 和 Azure IoT Hub 消费数据,从而能够高效地处理和监控来自这些云服务的事件流。
MongoDB Telegraf 插件使用户能够将指标发送到 MongoDB 数据库,自动管理时序集合。
集成详情
Azure Event Hubs
此插件充当 Azure Event Hubs 和 Azure IoT Hub 的消费者,允许用户高效地从这些平台摄取数据流。 Azure Event Hubs 是一个高度可扩展的数据流平台和事件摄取服务,能够每秒接收和处理数百万个事件,而 Azure IoT Hub 支持物联网应用中安全的设备到云和云到设备通信。 Event Hub 输入插件与这些服务无缝交互,提供可靠的消息消费和流处理能力。 主要功能包括消费者组的动态管理、防止数据丢失的消息跟踪以及用于预取计数、用户代理和元数据处理的可自定义设置。 此插件旨在支持各种用例,包括实时遥测数据收集、物联网数据处理以及与更广泛的 Azure 生态系统中的各种数据分析和监控工具集成。
MongoDB
此插件将指标发送到 MongoDB,并与其时序功能无缝集成,从而允许在时序集合尚不存在时自动创建集合作为时序集合。 它需要 MongoDB 5.0 或更高版本才能使用时序集合功能,这对于高效存储和查询基于时间的数据至关重要。 此插件通过确保所有相关指标都正确存储和组织在 MongoDB 中来增强监控功能,使用户能够利用 MongoDB 强大的查询和聚合功能进行时序分析。
配置
Azure Event Hubs
[[inputs.eventhub_consumer]]
## The default behavior is to create a new Event Hub client from environment variables.
## This requires one of the following sets of environment variables to be set:
##
## 1) Expected Environment Variables:
## - "EVENTHUB_CONNECTION_STRING"
##
## 2) Expected Environment Variables:
## - "EVENTHUB_NAMESPACE"
## - "EVENTHUB_NAME"
## - "EVENTHUB_KEY_NAME"
## - "EVENTHUB_KEY_VALUE"
## 3) Expected Environment Variables:
## - "EVENTHUB_NAMESPACE"
## - "EVENTHUB_NAME"
## - "AZURE_TENANT_ID"
## - "AZURE_CLIENT_ID"
## - "AZURE_CLIENT_SECRET"
## Uncommenting the option below will create an Event Hub client based solely on the connection string.
## This can either be the associated environment variable or hard coded directly.
## If this option is uncommented, environment variables will be ignored.
## Connection string should contain EventHubName (EntityPath)
# connection_string = ""
## Set persistence directory to a valid folder to use a file persister instead of an in-memory persister
# persistence_dir = ""
## Change the default consumer group
# consumer_group = ""
## By default the event hub receives all messages present on the broker, alternative modes can be set below.
## The timestamp should be in https://github.com/toml-lang/toml#offset-date-time format (RFC 3339).
## The 3 options below only apply if no valid persister is read from memory or file (e.g. first run).
# from_timestamp =
# latest = true
## Set a custom prefetch count for the receiver(s)
# prefetch_count = 1000
## Add an epoch to the receiver(s)
# epoch = 0
## Change to set a custom user agent, "telegraf" is used by default
# user_agent = "telegraf"
## To consume from a specific partition, set the partition_ids option.
## An empty array will result in receiving from all partitions.
# partition_ids = ["0","1"]
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Set either option below to true to use a system property as timestamp.
## You have the choice between EnqueuedTime and IoTHubEnqueuedTime.
## It is recommended to use this setting when the data itself has no timestamp.
# enqueued_time_as_ts = true
# iot_hub_enqueued_time_as_ts = true
## Tags or fields to create from keys present in the application property bag.
## These could for example be set by message enrichments in Azure IoT Hub.
# application_property_tags = []
# application_property_fields = []
## Tag or field name to use for metadata
## By default all metadata is disabled
# sequence_number_field = "SequenceNumber"
# enqueued_time_field = "EnqueuedTime"
# offset_field = "Offset"
# partition_id_tag = "PartitionID"
# partition_key_tag = "PartitionKey"
# iot_hub_device_connection_id_tag = "IoTHubDeviceConnectionID"
# iot_hub_auth_generation_id_tag = "IoTHubAuthGenerationID"
# iot_hub_connection_auth_method_tag = "IoTHubConnectionAuthMethod"
# iot_hub_connection_module_id_tag = "IoTHubConnectionModuleID"
# iot_hub_enqueued_time_field = "IoTHubEnqueuedTime"
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
MongoDB
[[outputs.mongodb]]
# connection string examples for mongodb
dsn = "mongodb://localhost:27017"
# dsn = "mongodb://mongod1:27017,mongod2:27017,mongod3:27017/admin&replicaSet=myReplSet&w=1"
# overrides serverSelectionTimeoutMS in dsn if set
# timeout = "30s"
# default authentication, optional
# authentication = "NONE"
# for SCRAM-SHA-256 authentication
# authentication = "SCRAM"
# username = "root"
# password = "***"
# for x509 certificate authentication
# authentication = "X509"
# tls_ca = "ca.pem"
# tls_key = "client.pem"
# # tls_key_pwd = "changeme" # required for encrypted tls_key
# insecure_skip_verify = false
# database to store measurements and time series collections
# database = "telegraf"
# granularity can be seconds, minutes, or hours.
# configuring this value will be based on your input collection frequency.
# see https://docs.mongodb.com/manual/core/timeseries-collections/#create-a-time-series-collection
# granularity = "seconds"
# optionally set a TTL to automatically expire documents from the measurement collections.
# ttl = "360h"
输入和输出集成示例
Azure Event Hubs
-
实时物联网设备监控:使用 Azure Event Hubs 插件监控来自物联网设备(如传感器和执行器)的遥测数据。 通过将设备数据流式传输到监控仪表板,组织可以深入了解系统性能、跟踪使用模式并快速响应异常情况。 此设置允许对设备进行主动管理,从而提高运营效率并减少停机时间。
-
事件驱动的数据处理工作流:利用此插件来触发数据处理工作流,以响应从 Azure Event Hubs 收到的事件。 例如,当新事件到达时,它可以启动数据转换、聚合或存储过程,从而使企业能够更有效地自动化其工作流。 这种集成增强了响应能力并简化了跨系统的运营。
-
与分析平台集成:实施该插件以将事件数据导入到 Azure Synapse 或 Power BI 等分析平台。 通过将实时流数据集成到分析工具中,组织可以执行全面的数据分析、推动商业智能工作并创建交互式可视化效果,从而为决策提供信息。
-
跨平台数据同步:利用 Azure Event Hubs 插件在不同的系统或平台之间同步数据流。 通过从 Azure Event Hubs 消费数据并将其转发到其他系统(如数据库或云存储),组织可以在其整个架构中维护一致且最新的信息,从而实现有凝聚力的数据策略。
MongoDB
-
物联网设备的 MongoDB 动态日志记录:利用此插件实时收集和存储来自大量物联网设备的指标。 通过将设备日志直接发送到 MongoDB,您可以创建一个集中式数据库,该数据库允许轻松访问和查询健康指标和性能数据,从而能够根据历史趋势进行主动维护和故障排除。
-
Web 流量的时序分析:使用 MongoDB Telegraf 插件收集和分析一段时间内的 Web 流量指标。 此应用程序可以帮助您了解高峰使用时间、用户交互和行为模式,这可以指导营销策略和基础设施扩展决策,以改善用户体验。
-
自动化监控和警报系统:将 MongoDB 插件集成到跟踪应用程序性能指标的自动化监控系统中。 借助时序集合,您可以根据特定阈值设置警报,使您的团队能够在潜在问题影响用户之前做出响应。 这种主动管理可以提高服务可靠性和整体性能。
-
指标存储中的数据保留和 TTL 管理:利用 MongoDB 集合中文档的 TTL 功能来自动过期过时的指标。 这对于仅最近的性能数据相关的环境特别有用,可防止您的 MongoDB 数据库因旧指标而变得混乱,并确保高效的数据管理。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。