Azure 事件中心和 Microsoft SQL Server 集成

由 InfluxData 构建的开源数据连接器 Telegraf 提供支持,实现强大的性能和轻松集成。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑Azure 事件中心和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都会更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Azure 事件中心输入插件允许 Telegraf 从 Azure 事件中心和 Azure IoT 中心消费数据,从而能够高效地处理和监控来自这些云服务的事件流。

Telegraf 的 SQL 插件有助于将指标存储在 SQL 数据库中。当配置为 Microsoft SQL Server 时,它支持特定的 DSN 格式和架构要求,从而实现与 SQL Server 的无缝集成。

集成详情

Azure 事件中心

此插件充当 Azure 事件中心和 Azure IoT 中心的消费者,允许用户高效地从这些平台摄取数据流。Azure 事件中心是一个高度可扩展的数据流平台和事件摄取服务,能够每秒接收和处理数百万个事件,而 Azure IoT 中心则支持物联网应用中安全的设备到云和云到设备通信。事件中心输入插件与这些服务无缝交互,提供可靠的消息消费和流处理能力。主要功能包括消费者组的动态管理、防止数据丢失的消息跟踪以及用于预取计数、用户代理和元数据处理的可自定义设置。此插件旨在支持各种用例,包括实时遥测数据收集、物联网数据处理以及与更广泛 Azure 生态系统中的各种数据分析和监控工具集成。

Microsoft SQL Server

Telegraf 的 Microsoft SQL Server SQL 输出插件旨在通过动态创建与传入数据结构匹配的表和列来捕获和存储指标数据。此集成利用 go-mssqldb 驱动程序,该驱动程序通过包含服务器、端口和数据库详细信息的 DSN 遵循 SQL Server 连接协议。尽管该驱动程序由于单元测试有限而被认为是实验性的,但它为动态架构生成和数据插入提供了强大的支持,从而可以详细记录系统性能的时间戳记录。尽管其状态为实验性,但这种灵活性使其成为需要可靠和精细指标记录的环境的宝贵工具。

配置

Azure 事件中心

[[inputs.eventhub_consumer]]
  ## The default behavior is to create a new Event Hub client from environment variables.
  ## This requires one of the following sets of environment variables to be set:
  ##
  ## 1) Expected Environment Variables:
  ##    - "EVENTHUB_CONNECTION_STRING"
  ##
  ## 2) Expected Environment Variables:
  ##    - "EVENTHUB_NAMESPACE"
  ##    - "EVENTHUB_NAME"
  ##    - "EVENTHUB_KEY_NAME"
  ##    - "EVENTHUB_KEY_VALUE"

  ## 3) Expected Environment Variables:
  ##    - "EVENTHUB_NAMESPACE"
  ##    - "EVENTHUB_NAME"
  ##    - "AZURE_TENANT_ID"
  ##    - "AZURE_CLIENT_ID"
  ##    - "AZURE_CLIENT_SECRET"

  ## Uncommenting the option below will create an Event Hub client based solely on the connection string.
  ## This can either be the associated environment variable or hard coded directly.
  ## If this option is uncommented, environment variables will be ignored.
  ## Connection string should contain EventHubName (EntityPath)
  # connection_string = ""

  ## Set persistence directory to a valid folder to use a file persister instead of an in-memory persister
  # persistence_dir = ""

  ## Change the default consumer group
  # consumer_group = ""

  ## By default the event hub receives all messages present on the broker, alternative modes can be set below.
  ## The timestamp should be in https://github.com/toml-lang/toml#offset-date-time format (RFC 3339).
  ## The 3 options below only apply if no valid persister is read from memory or file (e.g. first run).
  # from_timestamp =
  # latest = true

  ## Set a custom prefetch count for the receiver(s)
  # prefetch_count = 1000

  ## Add an epoch to the receiver(s)
  # epoch = 0

  ## Change to set a custom user agent, "telegraf" is used by default
  # user_agent = "telegraf"

  ## To consume from a specific partition, set the partition_ids option.
  ## An empty array will result in receiving from all partitions.
  # partition_ids = ["0","1"]

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Set either option below to true to use a system property as timestamp.
  ## You have the choice between EnqueuedTime and IoTHubEnqueuedTime.
  ## It is recommended to use this setting when the data itself has no timestamp.
  # enqueued_time_as_ts = true
  # iot_hub_enqueued_time_as_ts = true

  ## Tags or fields to create from keys present in the application property bag.
  ## These could for example be set by message enrichments in Azure IoT Hub.
  # application_property_tags = []
  # application_property_fields = []

  ## Tag or field name to use for metadata
  ## By default all metadata is disabled
  # sequence_number_field = "SequenceNumber"
  # enqueued_time_field = "EnqueuedTime"
  # offset_field = "Offset"
  # partition_id_tag = "PartitionID"
  # partition_key_tag = "PartitionKey"
  # iot_hub_device_connection_id_tag = "IoTHubDeviceConnectionID"
  # iot_hub_auth_generation_id_tag = "IoTHubAuthGenerationID"
  # iot_hub_connection_auth_method_tag = "IoTHubConnectionAuthMethod"
  # iot_hub_connection_module_id_tag = "IoTHubConnectionModuleID"
  # iot_hub_enqueued_time_field = "IoTHubEnqueuedTime"

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

Microsoft SQL Server

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "mssql"

  ## Data source name
  ## For Microsoft SQL Server, the DSN typically includes the server, port, username, password, and database name.
  ## Example DSN: "sqlserver://username:password@localhost:1433?database=telegraf"
  data_source_name = "sqlserver://username:password@localhost:1433?database=telegraf"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## You can customize the mapping if needed.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

输入和输出集成示例

Azure 事件中心

  1. 实时物联网设备监控:使用 Azure 事件中心插件监控来自物联网设备(如传感器和执行器)的遥测数据。通过将设备数据流式传输到监控仪表板,组织可以深入了解系统性能、跟踪使用模式并快速响应异常情况。这种设置可以对设备进行主动管理,提高运营效率并减少停机时间。

  2. 事件驱动的数据处理工作流:利用此插件根据从 Azure 事件中心接收到的事件触发数据处理工作流。例如,当新事件到达时,它可以启动数据转换、聚合或存储过程,从而使企业能够更有效地自动化其工作流。这种集成增强了响应能力并简化了跨系统的运营。

  3. 与分析平台集成:实施该插件以将事件数据导入 Azure Synapse 或 Power BI 等分析平台。通过将实时流数据集成到分析工具中,组织可以执行全面的数据分析、推动商业智能工作并创建信息丰富的交互式可视化效果,从而为决策提供依据。

  4. 跨平台数据同步:利用 Azure 事件中心插件跨不同系统或平台同步数据流。通过从 Azure 事件中心消费数据并将其转发到其他系统(如数据库或云存储),组织可以在其整个架构中维护一致且最新的信息,从而实现有凝聚力的数据策略。

Microsoft SQL Server

  1. 企业应用程序监控:利用该插件捕获从 SQL Server 上运行的企业应用程序的详细性能指标。这种设置使 IT 团队能够分析系统性能、跟踪事务时间并识别复杂的多层环境中的瓶颈。

  2. 动态基础设施审计:部署该插件以在 SQL Server 中创建基础设施更改和性能指标的动态审计日志。对于需要实时监控和系统性能历史分析以进行合规性和优化的组织,此用例非常理想。

  3. 自动化性能基准测试:使用该插件持续记录和分析 SQL Server 数据库的性能指标。这实现了自动化基准测试,将历史数据与当前性能进行比较,从而帮助快速识别服务中的异常或降级。

  4. 集成 DevOps 仪表板:将该插件与 DevOps 监控工具集成,以将来自 SQL Server 的实时指标馈送到集中式仪表板。这提供了应用程序运行状况的整体视图,使团队能够将 SQL Server 性能与应用程序级别的事件相关联,从而实现更快的故障排除和主动维护。

反馈

感谢您成为我们社区的一份子!如果您有任何一般反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都会更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成