Azure 事件中心和 Graphite 集成

易于集成且性能强大,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了优化查询和压缩、高速摄取和高可用性,您可能需要考虑 Azure 事件中心和 InfluxDB

5B+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

1B+

InfluxDB 下载量

2,800+

贡献者

目录

强大性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Azure 事件中心输入插件允许 Telegraf 从 Azure 事件中心和 Azure IoT 中心消费数据,从而能够高效地处理数据并监控来自这些云服务的事件流。

Graphite 插件使用户能够通过 TCP 将 Telegraf 收集的指标发送到 Graphite。此集成允许使用 Graphite 的强大功能高效地存储和可视化时序数据。

集成详情

Azure 事件中心

此插件充当 Azure 事件中心和 Azure IoT 中心的消费者,允许用户高效地从这些平台摄取数据流。Azure 事件中心是一个高度可扩展的数据流平台和事件摄取服务,能够每秒接收和处理数百万个事件,而 Azure IoT 中心支持 IoT 应用中安全的设备到云和云到设备通信。事件中心输入插件与这些服务无缝交互,提供可靠的消息消费和流处理能力。主要功能包括消费者组的动态管理、防止数据丢失的消息跟踪以及用于预取计数、用户代理和元数据处理的可自定义设置。此插件旨在支持各种用例,包括实时遥测数据收集、IoT 数据处理以及与更广泛 Azure 生态系统中的各种数据分析和监控工具集成。

Graphite

此插件通过原始 TCP 将指标写入 Graphite,从而将 Telegraf 收集的指标无缝集成到 Graphite 生态系统中。使用此插件,用户可以配置多个 TCP 端点以进行负载均衡,从而确保指标传输的高可用性和可靠性。使用前缀自定义指标命名以及利用各种模板选项的能力增强了在 Graphite 中表示数据的灵活性。此外,对 Graphite 标签的支持以及对指标名称进行严格清理的选项允许进行强大的数据管理,以满足用户的不同需求。对于希望利用 Graphite 强大的指标存储和可视化功能,同时保持对数据表示的控制的组织来说,此功能至关重要。

配置

Azure 事件中心

[[inputs.eventhub_consumer]]
  ## The default behavior is to create a new Event Hub client from environment variables.
  ## This requires one of the following sets of environment variables to be set:
  ##
  ## 1) Expected Environment Variables:
  ##    - "EVENTHUB_CONNECTION_STRING"
  ##
  ## 2) Expected Environment Variables:
  ##    - "EVENTHUB_NAMESPACE"
  ##    - "EVENTHUB_NAME"
  ##    - "EVENTHUB_KEY_NAME"
  ##    - "EVENTHUB_KEY_VALUE"

  ## 3) Expected Environment Variables:
  ##    - "EVENTHUB_NAMESPACE"
  ##    - "EVENTHUB_NAME"
  ##    - "AZURE_TENANT_ID"
  ##    - "AZURE_CLIENT_ID"
  ##    - "AZURE_CLIENT_SECRET"

  ## Uncommenting the option below will create an Event Hub client based solely on the connection string.
  ## This can either be the associated environment variable or hard coded directly.
  ## If this option is uncommented, environment variables will be ignored.
  ## Connection string should contain EventHubName (EntityPath)
  # connection_string = ""

  ## Set persistence directory to a valid folder to use a file persister instead of an in-memory persister
  # persistence_dir = ""

  ## Change the default consumer group
  # consumer_group = ""

  ## By default the event hub receives all messages present on the broker, alternative modes can be set below.
  ## The timestamp should be in https://github.com/toml-lang/toml#offset-date-time format (RFC 3339).
  ## The 3 options below only apply if no valid persister is read from memory or file (e.g. first run).
  # from_timestamp =
  # latest = true

  ## Set a custom prefetch count for the receiver(s)
  # prefetch_count = 1000

  ## Add an epoch to the receiver(s)
  # epoch = 0

  ## Change to set a custom user agent, "telegraf" is used by default
  # user_agent = "telegraf"

  ## To consume from a specific partition, set the partition_ids option.
  ## An empty array will result in receiving from all partitions.
  # partition_ids = ["0","1"]

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Set either option below to true to use a system property as timestamp.
  ## You have the choice between EnqueuedTime and IoTHubEnqueuedTime.
  ## It is recommended to use this setting when the data itself has no timestamp.
  # enqueued_time_as_ts = true
  # iot_hub_enqueued_time_as_ts = true

  ## Tags or fields to create from keys present in the application property bag.
  ## These could for example be set by message enrichments in Azure IoT Hub.
  # application_property_tags = []
  # application_property_fields = []

  ## Tag or field name to use for metadata
  ## By default all metadata is disabled
  # sequence_number_field = "SequenceNumber"
  # enqueued_time_field = "EnqueuedTime"
  # offset_field = "Offset"
  # partition_id_tag = "PartitionID"
  # partition_key_tag = "PartitionKey"
  # iot_hub_device_connection_id_tag = "IoTHubDeviceConnectionID"
  # iot_hub_auth_generation_id_tag = "IoTHubAuthGenerationID"
  # iot_hub_connection_auth_method_tag = "IoTHubConnectionAuthMethod"
  # iot_hub_connection_module_id_tag = "IoTHubConnectionModuleID"
  # iot_hub_enqueued_time_field = "IoTHubEnqueuedTime"

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

Graphite

# Configuration for Graphite server to send metrics to
[[outputs.graphite]]
  ## TCP endpoint for your graphite instance.
  ## If multiple endpoints are configured, the output will be load balanced.
  ## Only one of the endpoints will be written to with each iteration.
  servers = ["localhost:2003"]

  ## Local address to bind when connecting to the server
  ## If empty or not set, the local address is automatically chosen.
  # local_address = ""

  ## Prefix metrics name
  prefix = ""

  ## Graphite output template
  ## see https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md
  template = "host.tags.measurement.field"

  ## Strict sanitization regex
  ## This is the default sanitization regex that is used on data passed to the
  ## graphite serializer. Users can add additional characters here if required.
  ## Be aware that the characters, '/' '@' '*' are always replaced with '_',
  ## '..' is replaced with '.', and '\' is removed even if added to the
  ## following regex.
  # graphite_strict_sanitize_regex = '[^a-zA-Z0-9-:._=\p{L}]'

  ## Enable Graphite tags support
  # graphite_tag_support = false

  ## Applied sanitization mode when graphite tag support is enabled.
  ## * strict - uses the regex specified above
  ## * compatible - allows for greater number of characters
  # graphite_tag_sanitize_mode = "strict"

  ## Character for separating metric name and field for Graphite tags
  # graphite_separator = "."

  ## Graphite templates patterns
  ## 1. Template for cpu
  ## 2. Template for disk*
  ## 3. Default template
  # templates = [
  #  "cpu tags.measurement.host.field",
  #  "disk* measurement.field",
  #  "host.measurement.tags.field"
  #]

  ## timeout in seconds for the write connection to graphite
  # timeout = "2s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

输入和输出集成示例

Azure 事件中心

  1. 实时物联网设备监控:使用 Azure 事件中心插件来监控来自物联网设备(如传感器和执行器)的遥测数据。通过将设备数据流式传输到监控仪表板,组织可以深入了解系统性能、跟踪使用模式并快速响应异常情况。此设置允许对设备进行主动管理,从而提高运营效率并减少停机时间。

  2. 事件驱动的数据处理工作流:利用此插件来响应从 Azure 事件中心接收的事件,触发数据处理工作流。例如,当新事件到达时,它可以启动数据转换、聚合或存储过程,从而使企业能够更有效地自动化其工作流。此集成增强了响应能力并简化了跨系统的操作。

  3. 与分析平台集成:实施该插件以将事件数据导入到 Azure Synapse 或 Power BI 等分析平台。通过将实时流数据集成到分析工具中,组织可以执行全面的数据分析、推动商业智能工作并创建交互式可视化效果,从而为决策提供信息。

  4. 跨平台数据同步:利用 Azure 事件中心插件在不同的系统或平台之间同步数据流。通过从 Azure 事件中心消费数据并将其转发到数据库或云存储等其他系统,组织可以在其整个架构中保持一致且最新的信息,从而实现有凝聚力的数据策略。

Graphite

  1. 动态指标可视化:Graphite 插件可用于将来自各种来源(例如应用程序性能数据或服务器运行状况指标)的实时指标馈送到 Graphite。这种动态集成使团队能够创建交互式仪表板,可视化关键绩效指标、跟踪随时间变化的趋势,并做出数据驱动的决策以增强系统性能。

  2. 负载均衡指标收集:通过在插件中配置多个 TCP 端点,组织可以为指标传输实施负载均衡。此用例确保指标交付既具有弹性又高效,从而降低了高流量期间数据丢失的风险,并保持了到 Graphite 的可靠信息流。

  3. 自定义指标标记:借助对 Graphite 标签的支持,用户可以使用 Graphite 插件来增强其指标的粒度。使用相关信息(例如应用程序环境或服务类型)标记指标可以进行更精细的查询和分析,从而使团队能够深入研究特定感兴趣的领域,以获得更好的运营见解。

  4. 增强的数据清理:利用该插件的严格清理选项,用户可以确保其指标名称符合 Graphite 的要求。这种主动措施消除了指标名称中无效字符可能引起的问题,从而实现了更清洁的数据管理和更准确的可视化效果。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成