Azure 事件中心和 Dynatrace 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑Azure 事件中心和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Azure 事件中心输入插件允许 Telegraf 从 Azure 事件中心和 Azure IoT 中心消费数据,从而能够高效地处理数据和监控来自这些云服务的事件流。

Dynatrace 插件允许用户将 Telegraf 收集的指标直接发送到 Dynatrace 进行监控和分析。此集成增强了系统和应用程序的可观测性,为性能和运营健康状况提供了有价值的见解。

集成详情

Azure 事件中心

此插件充当 Azure 事件中心和 Azure IoT 中心的消费者,允许用户高效地从这些平台摄取数据流。Azure 事件中心是一个高度可扩展的数据流平台和事件摄取服务,能够每秒接收和处理数百万个事件,而 Azure IoT 中心支持 IoT 应用程序中安全的设备到云和云到设备通信。事件中心输入插件与这些服务无缝交互,提供可靠的消息消费和流处理能力。主要功能包括消费者组的动态管理、防止数据丢失的消息跟踪以及用于预取计数、用户代理和元数据处理的可自定义设置。此插件旨在支持各种用例,包括实时遥测数据收集、IoT 数据处理以及与更广泛的 Azure 生态系统中的各种数据分析和监控工具集成。

Dynatrace

Telegraf 的 Dynatrace 插件有助于通过 Dynatrace Metrics API V2 将指标传输到 Dynatrace 平台。此插件可以在两种模式下运行:它可以与 Dynatrace OneAgent 一起运行,后者自动执行身份验证,或者它可以以独立配置运行,这需要手动指定 URL 和 API 令牌,用于没有 OneAgent 的环境。除非明确配置为使用可用的配置选项将某些指标视为增量计数器,否则该插件主要将指标报告为仪表。此功能使用户能够自定义发送到 Dynatrace 的指标的行为,从而利用该平台的强大功能进行全面的性能监控和可观测性。对于用户而言,确保 Dynatrace 和 Telegraf 都符合版本要求至关重要,从而在与 Dynatrace 生态系统集成时优化兼容性和性能。

配置

Azure 事件中心

[[inputs.eventhub_consumer]]
  ## The default behavior is to create a new Event Hub client from environment variables.
  ## This requires one of the following sets of environment variables to be set:
  ##
  ## 1) Expected Environment Variables:
  ##    - "EVENTHUB_CONNECTION_STRING"
  ##
  ## 2) Expected Environment Variables:
  ##    - "EVENTHUB_NAMESPACE"
  ##    - "EVENTHUB_NAME"
  ##    - "EVENTHUB_KEY_NAME"
  ##    - "EVENTHUB_KEY_VALUE"

  ## 3) Expected Environment Variables:
  ##    - "EVENTHUB_NAMESPACE"
  ##    - "EVENTHUB_NAME"
  ##    - "AZURE_TENANT_ID"
  ##    - "AZURE_CLIENT_ID"
  ##    - "AZURE_CLIENT_SECRET"

  ## Uncommenting the option below will create an Event Hub client based solely on the connection string.
  ## This can either be the associated environment variable or hard coded directly.
  ## If this option is uncommented, environment variables will be ignored.
  ## Connection string should contain EventHubName (EntityPath)
  # connection_string = ""

  ## Set persistence directory to a valid folder to use a file persister instead of an in-memory persister
  # persistence_dir = ""

  ## Change the default consumer group
  # consumer_group = ""

  ## By default the event hub receives all messages present on the broker, alternative modes can be set below.
  ## The timestamp should be in https://github.com/toml-lang/toml#offset-date-time format (RFC 3339).
  ## The 3 options below only apply if no valid persister is read from memory or file (e.g. first run).
  # from_timestamp =
  # latest = true

  ## Set a custom prefetch count for the receiver(s)
  # prefetch_count = 1000

  ## Add an epoch to the receiver(s)
  # epoch = 0

  ## Change to set a custom user agent, "telegraf" is used by default
  # user_agent = "telegraf"

  ## To consume from a specific partition, set the partition_ids option.
  ## An empty array will result in receiving from all partitions.
  # partition_ids = ["0","1"]

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Set either option below to true to use a system property as timestamp.
  ## You have the choice between EnqueuedTime and IoTHubEnqueuedTime.
  ## It is recommended to use this setting when the data itself has no timestamp.
  # enqueued_time_as_ts = true
  # iot_hub_enqueued_time_as_ts = true

  ## Tags or fields to create from keys present in the application property bag.
  ## These could for example be set by message enrichments in Azure IoT Hub.
  # application_property_tags = []
  # application_property_fields = []

  ## Tag or field name to use for metadata
  ## By default all metadata is disabled
  # sequence_number_field = "SequenceNumber"
  # enqueued_time_field = "EnqueuedTime"
  # offset_field = "Offset"
  # partition_id_tag = "PartitionID"
  # partition_key_tag = "PartitionKey"
  # iot_hub_device_connection_id_tag = "IoTHubDeviceConnectionID"
  # iot_hub_auth_generation_id_tag = "IoTHubAuthGenerationID"
  # iot_hub_connection_auth_method_tag = "IoTHubConnectionAuthMethod"
  # iot_hub_connection_module_id_tag = "IoTHubConnectionModuleID"
  # iot_hub_enqueued_time_field = "IoTHubEnqueuedTime"

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

Dynatrace

[[outputs.dynatrace]]
  ## For usage with the Dynatrace OneAgent you can omit any configuration,
  ## the only requirement is that the OneAgent is running on the same host.
  ## Only setup environment url and token if you want to monitor a Host without the OneAgent present.
  ##
  ## Your Dynatrace environment URL.
  ## For Dynatrace OneAgent you can leave this empty or set it to "http://127.0.0.1:14499/metrics/ingest" (default)
  ## For Dynatrace SaaS environments the URL scheme is "https://{your-environment-id}.live.dynatrace.com/api/v2/metrics/ingest"
  ## For Dynatrace Managed environments the URL scheme is "https://{your-domain}/e/{your-environment-id}/api/v2/metrics/ingest"
  url = ""

  ## Your Dynatrace API token.
  ## Create an API token within your Dynatrace environment, by navigating to Settings > Integration > Dynatrace API
  ## The API token needs data ingest scope permission. When using OneAgent, no API token is required.
  api_token = ""

  ## Optional prefix for metric names (e.g.: "telegraf")
  prefix = "telegraf"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Optional flag for ignoring tls certificate check
  # insecure_skip_verify = false

  ## Connection timeout, defaults to "5s" if not set.
  timeout = "5s"

  ## If you want metrics to be treated and reported as delta counters, add the metric names here
  additional_counters = [ ]

  ## In addition or as an alternative to additional_counters, if you want metrics to be treated and
  ## reported as delta counters using regular expression pattern matching
  additional_counters_patterns = [ ]

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of the
  ## table

  ## Optional dimensions to be added to every metric
  # [outputs.dynatrace.default_dimensions]
  # default_key = "default value"

输入和输出集成示例

Azure 事件中心

  1. 实时 IoT 设备监控:使用 Azure 事件中心插件监控来自 IoT 设备(如传感器和执行器)的遥测数据。通过将设备数据流式传输到监控仪表板,组织可以深入了解系统性能、跟踪使用模式并快速响应异常情况。此设置允许对设备进行主动管理,从而提高运营效率并减少停机时间。

  2. 事件驱动的数据处理工作流:利用此插件触发数据处理工作流,以响应从 Azure 事件中心接收的事件。例如,当新事件到达时,它可以启动数据转换、聚合或存储过程,从而使企业能够更有效地自动化其工作流。此集成增强了响应能力并简化了跨系统的运营。

  3. 与分析平台集成:实施此插件以将事件数据导入到 Azure Synapse 或 Power BI 等分析平台。通过将实时流数据集成到分析工具中,组织可以执行全面的数据分析、推动商业智能工作并创建信息丰富的交互式可视化效果,从而为决策提供依据。

  4. 跨平台数据同步:利用 Azure 事件中心插件在不同的系统或平台之间同步数据流。通过从 Azure 事件中心消费数据并将其转发到数据库或云存储等其他系统,组织可以在其整个架构中维护一致且最新的信息,从而实现有凝聚力的数据策略。

Dynatrace

  1. 云基础设施监控:利用 Dynatrace 插件监控云基础设施设置,将来自 Telegraf 的实时指标馈送到 Dynatrace。此集成提供了资源利用率、应用程序性能和系统健康状况的整体视图,从而能够主动响应各种云环境中的性能问题。

  2. 自定义应用程序性能指标:通过配置 Dynatrace 输出插件以发送来自 Telegraf 的定制指标来实施自定义应用程序特定指标。通过利用附加的计数器和维度选项,开发团队可以获得与其应用程序运营要求精确对齐的见解,从而实现有针对性的优化工作。

  3. 多环境指标管理:对于运行多个 Dynatrace 环境(例如,生产、暂存和开发)的组织,请使用此插件从单个 Telegraf 实例管理所有环境的指标。通过正确配置端点和 API 令牌,团队可以在整个 SDLC 中保持一致的监控实践,确保在开发过程的早期检测到性能异常。

  4. 基于指标变化的自动警报:将 Dynatrace 输出插件与警报机制集成,该机制在特定指标超过定义的阈值时触发通知。这种情况涉及配置额外的计数器来监控关键的应用程序性能指标,从而能够快速采取补救措施以维持服务可用性和用户满意度。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成