Azure Event Hubs 和 Google BigQuery 集成

借助 InfluxData 构建的开源数据连接器 Telegraf,实现强大的性能和轻松集成。

info

对于大规模实时查询,这不是推荐的配置。为了实现查询和压缩优化、高速摄取和高可用性,您可能需要考虑Azure Event Hubs 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Azure Event Hubs 输入插件允许 Telegraf 从 Azure Event Hubs 和 Azure IoT 中心使用数据,从而能够高效地处理和监控来自这些云服务的事件流。

Google BigQuery 插件允许 Telegraf 将指标写入 Google Cloud BigQuery,从而为遥测数据实现强大的数据分析功能。

集成详情

Azure Event Hubs

此插件用作 Azure Event Hubs 和 Azure IoT 中心的消费者,允许用户高效地从这些平台摄取数据流。Azure Event Hubs 是一个高度可扩展的数据流平台和事件摄取服务,能够每秒接收和处理数百万个事件,而 Azure IoT 中心则支持 IoT 应用中安全的设备到云和云到设备通信。Event Hub 输入插件与这些服务无缝交互,提供可靠的消息消费和流处理能力。主要功能包括消费者组的动态管理、防止数据丢失的消息跟踪以及用于预取计数、用户代理和元数据处理的可自定义设置。此插件旨在支持各种用例,包括实时遥测数据收集、物联网数据处理以及与更广泛的 Azure 生态系统内的各种数据分析和监控工具集成。

Google BigQuery

Telegraf 的 Google BigQuery 插件实现了与 Google Cloud 的 BigQuery 服务的无缝集成,BigQuery 服务是一个流行的数据仓库和分析平台。此插件有助于将 Telegraf 收集的指标传输到 BigQuery 数据集中,使用户可以更轻松地执行分析并从其遥测数据中生成见解。它需要通过服务帐户或用户凭据进行身份验证,并且旨在处理各种数据类型,确保用户可以在存储在 BigQuery 表中时保持其指标的完整性和准确性。配置选项允许自定义数据集规范和处理指标,包括管理指标名称中的连字符,BigQuery 的流式插入不支持连字符。此插件对于利用 BigQuery 的可扩展性和强大的查询功能来分析大量监控数据的组织尤其有用。

配置

Azure Event Hubs

[[inputs.eventhub_consumer]]
  ## The default behavior is to create a new Event Hub client from environment variables.
  ## This requires one of the following sets of environment variables to be set:
  ##
  ## 1) Expected Environment Variables:
  ##    - "EVENTHUB_CONNECTION_STRING"
  ##
  ## 2) Expected Environment Variables:
  ##    - "EVENTHUB_NAMESPACE"
  ##    - "EVENTHUB_NAME"
  ##    - "EVENTHUB_KEY_NAME"
  ##    - "EVENTHUB_KEY_VALUE"

  ## 3) Expected Environment Variables:
  ##    - "EVENTHUB_NAMESPACE"
  ##    - "EVENTHUB_NAME"
  ##    - "AZURE_TENANT_ID"
  ##    - "AZURE_CLIENT_ID"
  ##    - "AZURE_CLIENT_SECRET"

  ## Uncommenting the option below will create an Event Hub client based solely on the connection string.
  ## This can either be the associated environment variable or hard coded directly.
  ## If this option is uncommented, environment variables will be ignored.
  ## Connection string should contain EventHubName (EntityPath)
  # connection_string = ""

  ## Set persistence directory to a valid folder to use a file persister instead of an in-memory persister
  # persistence_dir = ""

  ## Change the default consumer group
  # consumer_group = ""

  ## By default the event hub receives all messages present on the broker, alternative modes can be set below.
  ## The timestamp should be in https://github.com/toml-lang/toml#offset-date-time format (RFC 3339).
  ## The 3 options below only apply if no valid persister is read from memory or file (e.g. first run).
  # from_timestamp =
  # latest = true

  ## Set a custom prefetch count for the receiver(s)
  # prefetch_count = 1000

  ## Add an epoch to the receiver(s)
  # epoch = 0

  ## Change to set a custom user agent, "telegraf" is used by default
  # user_agent = "telegraf"

  ## To consume from a specific partition, set the partition_ids option.
  ## An empty array will result in receiving from all partitions.
  # partition_ids = ["0","1"]

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Set either option below to true to use a system property as timestamp.
  ## You have the choice between EnqueuedTime and IoTHubEnqueuedTime.
  ## It is recommended to use this setting when the data itself has no timestamp.
  # enqueued_time_as_ts = true
  # iot_hub_enqueued_time_as_ts = true

  ## Tags or fields to create from keys present in the application property bag.
  ## These could for example be set by message enrichments in Azure IoT Hub.
  # application_property_tags = []
  # application_property_fields = []

  ## Tag or field name to use for metadata
  ## By default all metadata is disabled
  # sequence_number_field = "SequenceNumber"
  # enqueued_time_field = "EnqueuedTime"
  # offset_field = "Offset"
  # partition_id_tag = "PartitionID"
  # partition_key_tag = "PartitionKey"
  # iot_hub_device_connection_id_tag = "IoTHubDeviceConnectionID"
  # iot_hub_auth_generation_id_tag = "IoTHubAuthGenerationID"
  # iot_hub_connection_auth_method_tag = "IoTHubConnectionAuthMethod"
  # iot_hub_connection_module_id_tag = "IoTHubConnectionModuleID"
  # iot_hub_enqueued_time_field = "IoTHubEnqueuedTime"

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

Google BigQuery

# Configuration for Google Cloud BigQuery to send entries
[[outputs.bigquery]]
  ## Credentials File
  credentials_file = "/path/to/service/account/key.json"

  ## Google Cloud Platform Project
  # project = ""

  ## The namespace for the metric descriptor
  dataset = "telegraf"

  ## Timeout for BigQuery operations.
  # timeout = "5s"

  ## Character to replace hyphens on Metric name
  # replace_hyphen_to = "_"

  ## Write all metrics in a single compact table
  # compact_table = ""
  

输入和输出集成示例

Azure Event Hubs

  1. 实时物联网设备监控:使用 Azure Event Hubs 插件监控来自物联网设备(如传感器和执行器)的遥测数据。通过将设备数据流式传输到监控仪表板,组织可以深入了解系统性能、跟踪使用模式并快速响应异常情况。此设置允许对设备进行主动管理,从而提高运营效率并减少停机时间。

  2. 事件驱动的数据处理工作流:利用此插件来响应从 Azure Event Hubs 接收到的事件来触发数据处理工作流。例如,当新事件到达时,它可以启动数据转换、聚合或存储过程,从而使企业能够更有效地自动化其工作流。这种集成增强了响应能力并简化了跨系统的运营。

  3. 与分析平台集成:实施该插件以将事件数据导入到 Azure Synapse 或 Power BI 等分析平台。通过将实时流数据集成到分析工具中,组织可以执行全面的数据分析、推动商业智能工作并创建信息丰富的决策交互式可视化。

  4. 跨平台数据同步:使用 Azure Event Hubs 插件跨不同的系统或平台同步数据流。通过从 Azure Event Hubs 使用数据并将其转发到数据库或云存储等其他系统,组织可以在其整个架构中维护一致且最新的信息,从而实现有凝聚力的数据策略。

Google BigQuery

  1. 实时分析仪表板:利用 Google BigQuery 插件将实时指标馈送到 Google Cloud 上托管的自定义分析仪表板。此设置将允许团队实时可视化性能数据,从而深入了解系统健康状况和使用模式。通过使用 BigQuery 的查询功能,用户可以轻松创建量身定制的报告和仪表板,以满足其特定需求,从而增强决策过程。

  2. 成本管理和优化分析:利用该插件自动将来自各种服务的成本相关指标发送到 BigQuery。分析此数据可以帮助企业识别不必要的费用并优化资源使用。通过在 BigQuery 中执行聚合和转换查询,组织可以创建准确的预测并有效地管理其云支出。

  3. 团队间关于监控数据的协作:使组织内不同的团队能够使用 BigQuery 共享其监控数据。借助此 Telegraf 插件,团队可以将其指标推送到中央 BigQuery 实例,从而促进协作。这种数据共享方法鼓励最佳实践和跨职能意识,从而共同改进系统性能和可靠性。

  4. 用于容量规划的历史分析:通过使用 BigQuery 插件,公司可以收集和存储对于容量规划至关重要的历史指标数据。分析随时间推移的趋势可以帮助预测系统需求并主动扩展基础设施。组织可以创建时序分析并识别模式,从而为他们的长期战略决策提供信息。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成