目录
输入和输出集成概述
Azure 事件中心输入插件允许 Telegraf 从 Azure 事件中心和 Azure IoT 中心消费数据,从而实现来自这些云服务的事件流的高效数据处理和监控。
Azure 数据资源管理器插件允许将指标收集与 Azure 数据资源管理器集成,使用户能够高效地分析和查询其遥测数据。借助此插件,用户可以配置摄取设置以满足其需求,并利用 Azure 强大的分析功能。
集成详情
Azure 事件中心
此插件充当 Azure 事件中心和 Azure IoT 中心的消费者,允许用户高效地从这些平台摄取数据流。Azure 事件中心是一个高度可扩展的数据流平台和事件摄取服务,能够每秒接收和处理数百万个事件,而 Azure IoT 中心则在 IoT 应用程序中实现安全的设备到云和云到设备通信。事件中心输入插件与这些服务无缝交互,提供可靠的消息消费和流处理功能。主要功能包括消费者组的动态管理、防止数据丢失的消息跟踪以及用于预取计数、用户代理和元数据处理的可自定义设置。此插件旨在支持各种用例,包括实时遥测数据收集、IoT 数据处理以及与更广泛的 Azure 生态系统中的各种数据分析和监控工具集成。
Azure 数据资源管理器
Azure 数据资源管理器插件允许用户将从各种 Telegraf 输入插件收集的指标、日志和时序数据写入 Azure 数据资源管理器、Azure Synapse 和 Fabric 中的实时分析。这种集成充当桥梁,使应用程序和服务能够有效地监控其性能指标或日志。Azure 数据资源管理器针对大量不同数据类型的分析进行了优化,使其成为云环境中实时分析和监控解决方案的绝佳选择。该插件使用户能够根据其要求配置指标摄取,动态定义表架构,并设置各种摄取方法,同时保留数据库操作所需的角色和权限方面的灵活性。这为利用云服务的现代应用程序提供了可扩展且安全的监控设置。
配置
Azure 事件中心
[[inputs.eventhub_consumer]]
## The default behavior is to create a new Event Hub client from environment variables.
## This requires one of the following sets of environment variables to be set:
##
## 1) Expected Environment Variables:
## - "EVENTHUB_CONNECTION_STRING"
##
## 2) Expected Environment Variables:
## - "EVENTHUB_NAMESPACE"
## - "EVENTHUB_NAME"
## - "EVENTHUB_KEY_NAME"
## - "EVENTHUB_KEY_VALUE"
## 3) Expected Environment Variables:
## - "EVENTHUB_NAMESPACE"
## - "EVENTHUB_NAME"
## - "AZURE_TENANT_ID"
## - "AZURE_CLIENT_ID"
## - "AZURE_CLIENT_SECRET"
## Uncommenting the option below will create an Event Hub client based solely on the connection string.
## This can either be the associated environment variable or hard coded directly.
## If this option is uncommented, environment variables will be ignored.
## Connection string should contain EventHubName (EntityPath)
# connection_string = ""
## Set persistence directory to a valid folder to use a file persister instead of an in-memory persister
# persistence_dir = ""
## Change the default consumer group
# consumer_group = ""
## By default the event hub receives all messages present on the broker, alternative modes can be set below.
## The timestamp should be in https://github.com/toml-lang/toml#offset-date-time format (RFC 3339).
## The 3 options below only apply if no valid persister is read from memory or file (e.g. first run).
# from_timestamp =
# latest = true
## Set a custom prefetch count for the receiver(s)
# prefetch_count = 1000
## Add an epoch to the receiver(s)
# epoch = 0
## Change to set a custom user agent, "telegraf" is used by default
# user_agent = "telegraf"
## To consume from a specific partition, set the partition_ids option.
## An empty array will result in receiving from all partitions.
# partition_ids = ["0","1"]
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Set either option below to true to use a system property as timestamp.
## You have the choice between EnqueuedTime and IoTHubEnqueuedTime.
## It is recommended to use this setting when the data itself has no timestamp.
# enqueued_time_as_ts = true
# iot_hub_enqueued_time_as_ts = true
## Tags or fields to create from keys present in the application property bag.
## These could for example be set by message enrichments in Azure IoT Hub.
# application_property_tags = []
# application_property_fields = []
## Tag or field name to use for metadata
## By default all metadata is disabled
# sequence_number_field = "SequenceNumber"
# enqueued_time_field = "EnqueuedTime"
# offset_field = "Offset"
# partition_id_tag = "PartitionID"
# partition_key_tag = "PartitionKey"
# iot_hub_device_connection_id_tag = "IoTHubDeviceConnectionID"
# iot_hub_auth_generation_id_tag = "IoTHubAuthGenerationID"
# iot_hub_connection_auth_method_tag = "IoTHubConnectionAuthMethod"
# iot_hub_connection_module_id_tag = "IoTHubConnectionModuleID"
# iot_hub_enqueued_time_field = "IoTHubEnqueuedTime"
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
Azure 数据资源管理器
[[outputs.azure_data_explorer]]
## The URI property of the Azure Data Explorer resource on Azure
## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
endpoint_url = ""
## The Azure Data Explorer database that the metrics will be ingested into.
## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
## ex: "exampledatabase"
database = ""
## Timeout for Azure Data Explorer operations
# timeout = "20s"
## Type of metrics grouping used when pushing to Azure Data Explorer.
## Default is "TablePerMetric" for one table per different metric.
## For more information, please check the plugin README.
# metrics_grouping_type = "TablePerMetric"
## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
# table_name = ""
## Creates tables and relevant mapping if set to true(default).
## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
# create_tables = true
## Ingestion method to use.
## Available options are
## - managed -- streaming ingestion with fallback to batched ingestion or the "queued" method below
## - queued -- queue up metrics data and process sequentially
# ingestion_type = "queued"
输入和输出集成示例
Azure 事件中心
-
实时物联网设备监控:使用 Azure 事件中心插件来监控来自物联网设备(如传感器和执行器)的遥测数据。通过将设备数据流式传输到监控仪表板,组织可以深入了解系统性能、跟踪使用模式并快速响应异常情况。此设置允许对设备进行主动管理,从而提高运营效率并减少停机时间。
-
事件驱动的数据处理工作流:利用此插件来触发数据处理工作流,以响应从 Azure 事件中心接收的事件。例如,当新事件到达时,它可以启动数据转换、聚合或存储过程,从而使企业能够更有效地自动化其工作流。这种集成增强了响应能力并简化了跨系统的运营。
-
与分析平台集成:实施此插件以将事件数据导入到分析平台(如 Azure Synapse 或 Power BI)。通过将实时流数据集成到分析工具中,组织可以执行全面的数据分析、推动商业智能工作并创建交互式可视化效果,从而为决策提供信息。
-
跨平台数据同步:利用 Azure 事件中心插件来跨不同系统或平台同步数据流。通过从 Azure 事件中心消费数据并将其转发到其他系统(如数据库或云存储),组织可以在其整个架构中保持一致且最新的信息,从而实现有凝聚力的数据策略。
Azure 数据资源管理器
-
实时监控仪表板:通过使用此插件将来自各种服务的指标集成到 Azure 数据资源管理器中,组织可以构建反映实时性能指标的综合仪表板。这使团队能够主动响应性能问题并优化系统健康状况,而不会延迟。
-
集中式日志管理:利用 Azure 数据资源管理器来整合来自多个应用程序和服务的日志。通过利用此插件,组织可以简化其日志分析流程,从而更轻松地搜索、过滤和从随时间累积的历史数据中获取见解。
-
数据驱动的警报系统:通过基于通过此插件发送的指标配置警报来增强监控功能。组织可以设置阈值并自动化事件响应,从而显着减少停机时间并提高关键运营的可靠性。
-
机器学习模型训练:通过利用发送到 Azure 数据资源管理器的数据,组织可以执行大规模分析并准备数据以供输入到机器学习模型中。此插件支持构建可随后用于预测分析的数据结构,从而提高决策能力。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。