Docker 和 Snowflake 集成

强大的性能和简易的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Docker 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。使用 InfluxDB,这是排名第一的、旨在与 Telegraf 协同扩展的时序平台。

查看入门方法

输入和输出集成概述

Docker 输入插件允许您使用 Docker Engine API 从 Docker 容器收集指标,从而增强容器化应用程序的可见性和监控。

Telegraf 的 SQL 插件允许将指标无缝存储在 SQL 数据库中。当配置为 Snowflake 时,它采用专门的 DSN 格式和动态表创建,以将指标映射到适当的模式。

集成详情

Docker

Telegraf 的 Docker 输入插件从 Docker Engine API 收集有价值的指标,从而提供对正在运行的容器的洞察。此插件利用官方 Docker 客户端与 Engine API 交互,允许用户监控各种容器状态、资源分配和性能指标。通过按名称和状态过滤容器的选项,以及可自定义的标签,此插件支持在各种环境中监控容器化应用程序的灵活性,无论是在本地系统上还是在 Kubernetes 等编排平台内。此外,它还通过要求访问 Docker 守护程序的权限来解决安全问题,并强调在容器化环境中部署时进行正确的配置。

Snowflake

Telegraf 的 SQL 插件旨在通过基于传入数据创建表和列来动态地将指标写入 SQL 数据库。当配置为 Snowflake 时,它采用 gosnowflake 驱动程序,该驱动程序使用 DSN,DSN 以紧凑的格式封装凭据、帐户详细信息和数据库配置。此设置允许自动生成表,其中每个指标都以精确的时间戳记录,从而确保详细的历史跟踪。尽管该集成被认为是实验性的,但它利用了 Snowflake 强大的数据仓库功能,使其适用于可扩展的、基于云的分析和报告解决方案。

配置

Docker

[[inputs.docker]]
  ## Docker Endpoint
  ##   To use TCP, set endpoint = "tcp://[ip]:[port]"
  ##   To use environment variables (ie, docker-machine), set endpoint = "ENV"
  endpoint = "unix:///var/run/docker.sock"

  ## Set to true to collect Swarm metrics(desired_replicas, running_replicas)
  ## Note: configure this in one of the manager nodes in a Swarm cluster.
  ## configuring in multiple Swarm managers results in duplication of metrics.
  gather_services = false

  ## Only collect metrics for these containers. Values will be appended to
  ## container_name_include.
  ## Deprecated (1.4.0), use container_name_include
  container_names = []

  ## Set the source tag for the metrics to the container ID hostname, eg first 12 chars
  source_tag = false

  ## Containers to include and exclude. Collect all if empty. Globs accepted.
  container_name_include = []
  container_name_exclude = []

  ## Container states to include and exclude. Globs accepted.
  ## When empty only containers in the "running" state will be captured.
  # container_state_include = []
  # container_state_exclude = []

  ## Objects to include for disk usage query
  ## Allowed values are "container", "image", "volume" 
  ## When empty disk usage is excluded
  storage_objects = []

  ## Timeout for docker list, info, and stats commands
  timeout = "5s"

  ## Whether to report for each container per-device blkio (8:0, 8:1...),
  ## network (eth0, eth1, ...) and cpu (cpu0, cpu1, ...) stats or not.
  ## Usage of this setting is discouraged since it will be deprecated in favor of 'perdevice_include'.
  ## Default value is 'true' for backwards compatibility, please set it to 'false' so that 'perdevice_include' setting
  ## is honored.
  perdevice = true

  ## Specifies for which classes a per-device metric should be issued
  ## Possible values are 'cpu' (cpu0, cpu1, ...), 'blkio' (8:0, 8:1, ...) and 'network' (eth0, eth1, ...)
  ## Please note that this setting has no effect if 'perdevice' is set to 'true'
  # perdevice_include = ["cpu"]

  ## Whether to report for each container total blkio and network stats or not.
  ## Usage of this setting is discouraged since it will be deprecated in favor of 'total_include'.
  ## Default value is 'false' for backwards compatibility, please set it to 'true' so that 'total_include' setting
  ## is honored.
  total = false

  ## Specifies for which classes a total metric should be issued. Total is an aggregated of the 'perdevice' values.
  ## Possible values are 'cpu', 'blkio' and 'network'
  ## Total 'cpu' is reported directly by Docker daemon, and 'network' and 'blkio' totals are aggregated by this plugin.
  ## Please note that this setting has no effect if 'total' is set to 'false'
  # total_include = ["cpu", "blkio", "network"]

  ## docker labels to include and exclude as tags.  Globs accepted.
  ## Note that an empty array for both will include all labels as tags
  docker_label_include = []
  docker_label_exclude = []

  ## Which environment variables should we use as a tag
  tag_env = ["JAVA_HOME", "HEAP_SIZE"]

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Snowflake

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "snowflake"

  ## Data source name
  ## For Snowflake, the DSN format typically includes the username, password, account identifier, and optional warehouse, database, and schema.
  ## Example DSN: "username:password@account/warehouse/db/schema"
  data_source_name = "username:password@account/warehouse/db/schema"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## Defaults to ANSI/ISO SQL types unless overridden. Adjust if needed for Snowflake compatibility.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

输入和输出集成示例

Docker

  1. 监控容器化应用程序的性能:使用 Docker 输入插件来跟踪在 Docker 容器中运行的应用程序的 CPU、内存、磁盘 I/O 和网络活动。通过收集这些指标,DevOps 团队可以主动管理资源分配、排除性能瓶颈,并确保跨不同环境的最佳应用程序性能。

  2. 与 Kubernetes 集成:利用此插件收集由 Kubernetes 编排的 Docker 容器的指标。通过滤除不必要的 Kubernetes 标签并专注于关键指标,团队可以简化其监控解决方案并创建仪表板,以提供对在 Kubernetes 集群中运行的微服务的总体健康状况的洞察。

  3. 容量规划和资源优化:使用 Docker 输入插件收集的指标来执行 Docker 部署的容量规划。分析使用模式有助于识别未充分利用的资源和过度配置的容器,从而指导基于实际使用趋势的向上或向下扩展决策。

  4. 容器异常的自动警报:基于通过 Docker 插件收集的指标设置警报规则,以通知团队资源使用量或服务中断的异常峰值。这种主动监控方法有助于维护服务可靠性并优化容器化应用程序的性能。

Snowflake

  1. 基于云的数据湖集成:利用该插件将来自各种来源的实时指标流式传输到 Snowflake 中,从而创建集中的数据湖。此集成支持云数据上的复杂分析和机器学习工作流程。

  2. 动态商业智能仪表板:利用该插件从传入指标自动生成表,并将它们馈送到 BI 工具中。这使企业能够创建动态仪表板,以可视化性能趋势和运营洞察,而无需手动模式管理。

  3. 可扩展的物联网分析:部署该插件以捕获来自物联网设备的高频数据到 Snowflake 中。此用例有助于传感器数据的聚合和分析,从而实现大规模的预测性维护和实时监控。

  4. 用于合规性的历史趋势分析:使用该插件在 Snowflake 中记录和存档详细的指标数据,然后可以查询这些数据以进行长期趋势分析和合规性报告。此设置确保组织可以维护强大的审计跟踪并在需要时执行取证分析。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。使用 InfluxDB,这是排名第一的、旨在与 Telegraf 协同扩展的时序平台。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成