目录
输入和输出集成概览
Docker 输入插件允许您使用 Docker Engine API 从 Docker 容器收集指标,从而增强容器化应用程序的可视性和监控。
Prometheus 输出插件使 Telegraf 能够在 HTTP 端点公开指标,以供 Prometheus 服务器抓取。此集成允许用户以 Prometheus 可以高效处理的格式从各种来源收集和聚合指标。
集成详情
Docker
Telegraf 的 Docker 输入插件从 Docker Engine API 收集有价值的指标,从而提供对正在运行的容器的深入了解。此插件利用官方 Docker 客户端与 Engine API 交互,允许用户监控各种容器状态、资源分配和性能指标。该插件可以选择按名称和状态过滤容器,以及自定义标签,从而灵活地监控本地系统或 Kubernetes 等编排平台中的容器化应用程序。此外,它还通过要求访问 Docker 守护程序的权限来解决安全问题,并强调在容器化环境中部署时进行正确配置。
Prometheus
此插件促进与 Prometheus 的集成,Prometheus 是一种著名的开源监控和警报工具包,专为大规模环境中的可靠性和效率而设计。通过充当 Prometheus 客户端,它允许用户通过 HTTP 服务器公开一组定义的指标,Prometheus 可以按指定的时间间隔抓取这些指标。此插件在监控各种系统中发挥着至关重要的作用,它允许这些系统以标准化格式发布性能指标,从而实现对系统健康状况和行为的广泛可见性。主要功能包括支持配置各种端点、启用 TLS 以进行安全通信以及 HTTP 基本身份验证选项。该插件还与全局 Telegraf 配置设置无缝集成,支持广泛的自定义以适应特定的监控需求。这促进了不同系统必须有效通信性能数据的环境中的互操作性。利用 Prometheus 的指标格式,它可以通过指标过期和收集器控制等高级配置实现灵活的指标管理,为监控和警报工作流程提供了完善的解决方案。
配置
Docker
[[inputs.docker]]
## Docker Endpoint
## To use TCP, set endpoint = "tcp://[ip]:[port]"
## To use environment variables (ie, docker-machine), set endpoint = "ENV"
endpoint = "unix:///var/run/docker.sock"
## Set to true to collect Swarm metrics(desired_replicas, running_replicas)
## Note: configure this in one of the manager nodes in a Swarm cluster.
## configuring in multiple Swarm managers results in duplication of metrics.
gather_services = false
## Only collect metrics for these containers. Values will be appended to
## container_name_include.
## Deprecated (1.4.0), use container_name_include
container_names = []
## Set the source tag for the metrics to the container ID hostname, eg first 12 chars
source_tag = false
## Containers to include and exclude. Collect all if empty. Globs accepted.
container_name_include = []
container_name_exclude = []
## Container states to include and exclude. Globs accepted.
## When empty only containers in the "running" state will be captured.
# container_state_include = []
# container_state_exclude = []
## Objects to include for disk usage query
## Allowed values are "container", "image", "volume"
## When empty disk usage is excluded
storage_objects = []
## Timeout for docker list, info, and stats commands
timeout = "5s"
## Whether to report for each container per-device blkio (8:0, 8:1...),
## network (eth0, eth1, ...) and cpu (cpu0, cpu1, ...) stats or not.
## Usage of this setting is discouraged since it will be deprecated in favor of 'perdevice_include'.
## Default value is 'true' for backwards compatibility, please set it to 'false' so that 'perdevice_include' setting
## is honored.
perdevice = true
## Specifies for which classes a per-device metric should be issued
## Possible values are 'cpu' (cpu0, cpu1, ...), 'blkio' (8:0, 8:1, ...) and 'network' (eth0, eth1, ...)
## Please note that this setting has no effect if 'perdevice' is set to 'true'
# perdevice_include = ["cpu"]
## Whether to report for each container total blkio and network stats or not.
## Usage of this setting is discouraged since it will be deprecated in favor of 'total_include'.
## Default value is 'false' for backwards compatibility, please set it to 'true' so that 'total_include' setting
## is honored.
total = false
## Specifies for which classes a total metric should be issued. Total is an aggregated of the 'perdevice' values.
## Possible values are 'cpu', 'blkio' and 'network'
## Total 'cpu' is reported directly by Docker daemon, and 'network' and 'blkio' totals are aggregated by this plugin.
## Please note that this setting has no effect if 'total' is set to 'false'
# total_include = ["cpu", "blkio", "network"]
## docker labels to include and exclude as tags. Globs accepted.
## Note that an empty array for both will include all labels as tags
docker_label_include = []
docker_label_exclude = []
## Which environment variables should we use as a tag
tag_env = ["JAVA_HOME", "HEAP_SIZE"]
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Prometheus
[[outputs.prometheus_client]]
## Address to listen on.
## ex:
## listen = ":9273"
## listen = "vsock://:9273"
listen = ":9273"
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
## Metric version controls the mapping from Prometheus metrics into Telegraf metrics.
## See "Metric Format Configuration" in plugins/inputs/prometheus/README.md for details.
## Valid options: 1, 2
# metric_version = 1
## Use HTTP Basic Authentication.
# basic_username = "Foo"
# basic_password = "Bar"
## If set, the IP Ranges which are allowed to access metrics.
## ex: ip_range = ["192.168.0.0/24", "192.168.1.0/30"]
# ip_range = []
## Path to publish the metrics on.
# path = "/metrics"
## Expiration interval for each metric. 0 == no expiration
# expiration_interval = "60s"
## Collectors to enable, valid entries are "gocollector" and "process".
## If unset, both are enabled.
# collectors_exclude = ["gocollector", "process"]
## Send string metrics as Prometheus labels.
## Unless set to false all string metrics will be sent as labels.
# string_as_label = true
## If set, enable TLS with the given certificate.
# tls_cert = "/etc/ssl/telegraf.crt"
# tls_key = "/etc/ssl/telegraf.key"
## Set one or more allowed client CA certificate file names to
## enable mutually authenticated TLS connections
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Export metric collection time.
# export_timestamp = false
## Specify the metric type explicitly.
## This overrides the metric-type of the Telegraf metric. Globbing is allowed.
# [outputs.prometheus_client.metric_types]
# counter = []
# gauge = []
输入和输出集成示例
Docker
-
监控容器化应用程序的性能:使用 Docker 输入插件来跟踪在 Docker 容器中运行的应用程序的 CPU、内存、磁盘 I/O 和网络活动。通过收集这些指标,DevOps 团队可以主动管理资源分配、排除性能瓶颈并确保不同环境中的最佳应用程序性能。
-
与 Kubernetes 集成:利用此插件收集由 Kubernetes 编排的 Docker 容器的指标。通过过滤掉不必要的 Kubernetes 标签并专注于关键指标,团队可以简化其监控解决方案并创建仪表板,从而深入了解在 Kubernetes 集群中运行的微服务的整体健康状况。
-
容量规划和资源优化:使用 Docker 输入插件收集的指标来执行 Docker 部署的容量规划。分析使用模式有助于识别未充分利用的资源和过度配置的容器,从而根据实际使用趋势指导扩展或缩减的决策。
-
容器异常的自动警报:根据通过 Docker 插件收集的指标设置警报规则,以通知团队资源使用量异常飙升或服务中断。这种主动监控方法有助于维护服务可靠性并优化容器化应用程序的性能。
Prometheus
-
监控多云部署:利用 Prometheus 插件从跨多个云提供商运行的应用程序收集指标。这种情况允许团队通过单个 Prometheus 实例集中监控,该实例从不同环境抓取指标,从而提供跨混合基础设施的统一性能指标视图。它简化了报告和警报,提高了运营效率,而无需复杂的集成。
-
增强微服务可见性:实施该插件以公开 Kubernetes 集群中各种微服务的指标。通过使用 Prometheus,团队可以实时可视化服务指标、识别瓶颈并维护系统健康检查。此设置支持基于从收集的指标生成的见解进行自适应扩展和资源利用率优化。它增强了对服务交互进行故障排除的能力,从而显着提高了微服务架构的弹性。
-
电子商务中的实时异常检测:通过将此插件与 Prometheus 结合使用,电子商务平台可以监控关键绩效指标,例如响应时间和错误率。将异常检测算法与抓取的指标集成,可以识别指示潜在问题的意外模式,例如突然的流量高峰或后端服务故障。这种主动监控增强了业务连续性和运营效率,最大限度地减少了潜在的停机时间,同时确保了服务可靠性。
-
API 的性能指标报告:利用 Prometheus 输出插件收集和报告 API 性能指标,然后可以在 Grafana 仪表板中可视化这些指标。此用例可以详细分析 API 响应时间、吞吐量和错误率,从而促进 API 服务的持续改进。通过密切监控这些指标,团队可以快速响应性能下降,确保最佳 API 性能并保持高水平的服务可用性。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。