Docker 和 Graylog 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Docker 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都会变得更有价值。借助 InfluxDB,排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Docker 输入插件允许您使用 Docker Engine API 从 Docker 容器中收集指标,从而增强容器化应用程序的可见性和监控。

Graylog 插件允许您将 Telegraf 指标发送到 Graylog 服务器,利用 GELF 格式进行结构化日志记录。

集成详情

Docker

Telegraf 的 Docker 输入插件从 Docker Engine API 收集有价值的指标,从而提供对正在运行的容器的洞察。此插件利用官方 Docker 客户端与 Engine API 交互,允许用户监控各种容器状态、资源分配和性能指标。通过按名称和状态过滤容器的选项,以及可自定义的标签,此插件支持在各种环境中监控容器化应用程序的灵活性,无论是在本地系统上还是在 Kubernetes 等编排平台中。此外,它通过要求访问 Docker 守护程序的权限来解决安全问题,并强调在容器化环境中部署时的正确配置。

Graylog

Graylog 插件旨在用于使用 GELF (Graylog Extended Log Format) 格式将指标发送到 Graylog 实例。GELF 有助于标准化日志记录数据,使系统更轻松地发送和分析日志。该插件遵循 GELF 规范,该规范规定了有效负载中特定字段的要求。值得注意的是,时间戳必须为 UNIX 格式,如果存在,插件会将时间戳原样发送到 Graylog,而不会进行更改。如果省略,它会自动生成时间戳。此外,任何规范未明确定义的额外字段都将以_为前缀,这有助于保持数据组织性并符合 GELF 的要求。此功能对于实时监控应用程序和基础设施的用户尤其有价值,因为它允许跨多个系统进行无缝集成并提高可见性。

配置

Docker

[[inputs.docker]]
  ## Docker Endpoint
  ##   To use TCP, set endpoint = "tcp://[ip]:[port]"
  ##   To use environment variables (ie, docker-machine), set endpoint = "ENV"
  endpoint = "unix:///var/run/docker.sock"

  ## Set to true to collect Swarm metrics(desired_replicas, running_replicas)
  ## Note: configure this in one of the manager nodes in a Swarm cluster.
  ## configuring in multiple Swarm managers results in duplication of metrics.
  gather_services = false

  ## Only collect metrics for these containers. Values will be appended to
  ## container_name_include.
  ## Deprecated (1.4.0), use container_name_include
  container_names = []

  ## Set the source tag for the metrics to the container ID hostname, eg first 12 chars
  source_tag = false

  ## Containers to include and exclude. Collect all if empty. Globs accepted.
  container_name_include = []
  container_name_exclude = []

  ## Container states to include and exclude. Globs accepted.
  ## When empty only containers in the "running" state will be captured.
  # container_state_include = []
  # container_state_exclude = []

  ## Objects to include for disk usage query
  ## Allowed values are "container", "image", "volume" 
  ## When empty disk usage is excluded
  storage_objects = []

  ## Timeout for docker list, info, and stats commands
  timeout = "5s"

  ## Whether to report for each container per-device blkio (8:0, 8:1...),
  ## network (eth0, eth1, ...) and cpu (cpu0, cpu1, ...) stats or not.
  ## Usage of this setting is discouraged since it will be deprecated in favor of 'perdevice_include'.
  ## Default value is 'true' for backwards compatibility, please set it to 'false' so that 'perdevice_include' setting
  ## is honored.
  perdevice = true

  ## Specifies for which classes a per-device metric should be issued
  ## Possible values are 'cpu' (cpu0, cpu1, ...), 'blkio' (8:0, 8:1, ...) and 'network' (eth0, eth1, ...)
  ## Please note that this setting has no effect if 'perdevice' is set to 'true'
  # perdevice_include = ["cpu"]

  ## Whether to report for each container total blkio and network stats or not.
  ## Usage of this setting is discouraged since it will be deprecated in favor of 'total_include'.
  ## Default value is 'false' for backwards compatibility, please set it to 'true' so that 'total_include' setting
  ## is honored.
  total = false

  ## Specifies for which classes a total metric should be issued. Total is an aggregated of the 'perdevice' values.
  ## Possible values are 'cpu', 'blkio' and 'network'
  ## Total 'cpu' is reported directly by Docker daemon, and 'network' and 'blkio' totals are aggregated by this plugin.
  ## Please note that this setting has no effect if 'total' is set to 'false'
  # total_include = ["cpu", "blkio", "network"]

  ## docker labels to include and exclude as tags.  Globs accepted.
  ## Note that an empty array for both will include all labels as tags
  docker_label_include = []
  docker_label_exclude = []

  ## Which environment variables should we use as a tag
  tag_env = ["JAVA_HOME", "HEAP_SIZE"]

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Graylog

[[outputs.graylog]]
  ## Endpoints for your graylog instances.
  servers = ["udp://127.0.0.1:12201"]

  ## Connection timeout.
  # timeout = "5s"

  ## The field to use as the GELF short_message, if unset the static string
  ## "telegraf" will be used.
  ##   example: short_message_field = "message"
  # short_message_field = ""

  ## According to GELF payload specification, additional fields names must be prefixed
  ## with an underscore. Previous versions did not prefix custom field 'name' with underscore.
  ## Set to true for backward compatibility.
  # name_field_no_prefix = false

  ## Connection retry options
  ## Attempt to connect to the endpoints if the initial connection fails.
  ## If 'false', Telegraf will give up after 3 connection attempt and will
  ## exit with an error. If set to 'true', the plugin will retry to connect
  ## to the unconnected endpoints infinitely.
  # connection_retry = false
  ## Time to wait between connection retry attempts.
  # connection_retry_wait_time = "15s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

输入和输出集成示例

Docker

  1. 监控容器化应用程序的性能:使用 Docker 输入插件来跟踪 Docker 容器中运行的应用程序的 CPU、内存、磁盘 I/O 和网络活动。通过收集这些指标,DevOps 团队可以主动管理资源分配、排除性能瓶颈并确保跨不同环境的最佳应用程序性能。

  2. 与 Kubernetes 集成:利用此插件收集由 Kubernetes 编排的 Docker 容器的指标。通过过滤掉不必要的 Kubernetes 标签并专注于关键指标,团队可以简化其监控解决方案并创建仪表板,以深入了解 Kubernetes 集群中运行的微服务的整体运行状况。

  3. 容量规划和资源优化:使用 Docker 输入插件收集的指标来执行 Docker 部署的容量规划。分析使用模式有助于识别未充分利用的资源和过度配置的容器,从而指导根据实际使用趋势进行向上或向下扩展的决策。

  4. 容器异常的自动警报:根据通过 Docker 插件收集的指标设置警报规则,以通知团队资源使用量或服务中断异常激增。这种主动监控方法有助于维护服务可靠性并优化容器化应用程序的性能。

Graylog

  1. 增强云应用程序的日志管理:使用 Graylog Telegraf 插件聚合来自跨多个服务器的云部署应用程序的日志。通过集成此插件,团队可以集中日志记录数据,从而更轻松地排除问题、监控应用程序性能并保持符合日志记录标准。

  2. 实时安全监控:利用 Graylog 插件收集安全相关指标和日志并将其发送到 Graylog 服务器以进行实时分析。这使安全团队能够通过关联基础设施内各种来源的日志,快速识别异常、跟踪潜在漏洞并及时响应事件。

  3. 动态警报和通知系统:实施 Graylog 插件以增强基础设施中的警报机制。通过将指标发送到 Graylog,团队可以根据日志模式或意外行为设置动态警报,从而实现主动监控和快速事件响应策略。

  4. 跨平台日志整合:使用 Graylog 插件来促进跨平台日志整合,跨越本地部署、混合云和云等不同环境。通过以 GELF 格式标准化日志记录,组织可以确保一致的监控和故障排除实践,无论其服务托管在何处。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都会变得更有价值。借助 InfluxDB,排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成