目录
输入和输出集成概述
Consul 输入插件从 Consul 服务器收集健康检查指标,允许用户有效地监控服务状态。
Prometheus 输出插件使 Telegraf 能够在 HTTP 端点公开指标,以供 Prometheus 服务器抓取。此集成允许用户以 Prometheus 可以高效处理的格式从各种来源收集和聚合指标。
集成详情
Consul
Consul 输入插件旨在收集 Consul 中注册的所有服务的健康检查状态,Consul 是一种用于服务发现和基础设施管理的工具。通过查询 Consul API,此插件帮助用户监控其服务的健康状况,并确保它们正常运行并满足服务级别协议。它不提供遥测数据,但如果用户想要收集这些指标,可以使用 StatsD。该插件提供配置选项来连接到 Consul 服务器、管理身份验证以及指定如何处理从健康检查派生的标签。
Prometheus
此插件有助于与 Prometheus 集成,Prometheus 是一种著名的开源监控和警报工具包,专为大规模环境中的可靠性和效率而设计。通过作为 Prometheus 客户端工作,它允许用户通过 HTTP 服务器公开一组定义的指标,Prometheus 可以按指定的时间间隔抓取这些指标。此插件通过允许各种系统以标准化格式发布性能指标,从而在监控各种系统中发挥着至关重要的作用,从而可以广泛了解系统健康状况和行为。主要功能包括支持配置各种端点、启用 TLS 以进行安全通信以及 HTTP 基本身份验证选项。该插件还与全局 Telegraf 配置设置无缝集成,支持广泛的自定义以适应特定的监控需求。这促进了不同系统必须有效通信性能数据的环境中的互操作性。利用 Prometheus 的指标格式,它可以通过高级配置(例如指标过期和收集器控制)实现灵活的指标管理,从而为监控和警报工作流程提供复杂的解决方案。
配置
Consul
[[inputs.consul]]
## Consul server address
# address = "localhost:8500"
## URI scheme for the Consul server, one of "http", "https"
# scheme = "http"
## Metric version controls the mapping from Consul metrics into
## Telegraf metrics. Version 2 moved all fields with string values
## to tags.
##
## example: metric_version = 1; deprecated in 1.16
## metric_version = 2; recommended version
# metric_version = 1
## ACL token used in every request
# token = ""
## HTTP Basic Authentication username and password.
# username = ""
# password = ""
## Data center to query the health checks from
# datacenter = ""
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = true
## Consul checks' tag splitting
# When tags are formatted like "key:value" with ":" as a delimiter then
# they will be split and reported as proper key:value in Telegraf
# tag_delimiter = ":"
Prometheus
[[outputs.prometheus_client]]
## Address to listen on.
## ex:
## listen = ":9273"
## listen = "vsock://:9273"
listen = ":9273"
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
## Metric version controls the mapping from Prometheus metrics into Telegraf metrics.
## See "Metric Format Configuration" in plugins/inputs/prometheus/README.md for details.
## Valid options: 1, 2
# metric_version = 1
## Use HTTP Basic Authentication.
# basic_username = "Foo"
# basic_password = "Bar"
## If set, the IP Ranges which are allowed to access metrics.
## ex: ip_range = ["192.168.0.0/24", "192.168.1.0/30"]
# ip_range = []
## Path to publish the metrics on.
# path = "/metrics"
## Expiration interval for each metric. 0 == no expiration
# expiration_interval = "60s"
## Collectors to enable, valid entries are "gocollector" and "process".
## If unset, both are enabled.
# collectors_exclude = ["gocollector", "process"]
## Send string metrics as Prometheus labels.
## Unless set to false all string metrics will be sent as labels.
# string_as_label = true
## If set, enable TLS with the given certificate.
# tls_cert = "/etc/ssl/telegraf.crt"
# tls_key = "/etc/ssl/telegraf.key"
## Set one or more allowed client CA certificate file names to
## enable mutually authenticated TLS connections
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Export metric collection time.
# export_timestamp = false
## Specify the metric type explicitly.
## This overrides the metric-type of the Telegraf metric. Globbing is allowed.
# [outputs.prometheus_client.metric_types]
# counter = []
# gauge = []
输入和输出集成示例
Consul
-
服务健康监控仪表板:利用 Consul 输入插件为 Consul 中注册的所有服务创建一个全面的健康监控仪表板。这使运维团队能够实时可视化健康状态,从而快速识别服务问题并促进对服务中断或性能下降的快速响应。
-
自动化警报系统:实施一个自动化警报系统,该系统使用 Consul 输入插件收集的健康检查数据,以便在服务状态更改为 critical 时触发通知。此设置可以与 Slack 或电子邮件等通知系统集成,确保团队成员立即收到警报以解决潜在问题。
-
与事件管理集成:利用 Consul 输入插件的健康检查数据来馈送到事件管理系统中。通过分析健康状态趋势,团队可以根据受影响服务的关键性来确定事件的优先级,并简化其解决流程,从而提高整体服务可靠性和客户满意度。
Prometheus
-
监控多云部署:利用 Prometheus 插件从跨多个云提供商运行的应用程序收集指标。这种情况允许团队通过单个 Prometheus 实例集中监控,该实例从不同环境抓取指标,从而提供跨混合基础设施的性能指标的统一视图。它简化了报告和警报,提高了运营效率,而无需复杂的集成。
-
增强微服务可见性:实施插件以公开 Kubernetes 集群中各种微服务的指标。使用 Prometheus,团队可以实时可视化服务指标、识别瓶颈并维护系统健康检查。此设置支持基于从收集的指标生成的见解进行自适应扩展和资源利用率优化。它增强了对服务交互进行故障排除的能力,从而显着提高了微服务架构的弹性。
-
电子商务中的实时异常检测:通过将此插件与 Prometheus 一起使用,电子商务平台可以监控关键绩效指标,例如响应时间和错误率。将异常检测算法与抓取的指标集成在一起,可以识别指示潜在问题的意外模式,例如突发的流量高峰或后端服务故障。这种主动监控可以增强业务连续性和运营效率,最大限度地减少潜在的停机时间,同时确保服务可靠性。
-
API 的性能指标报告:利用 Prometheus 输出插件收集和报告 API 性能指标,然后可以在 Grafana 仪表板中可视化这些指标。此用例可以详细分析 API 响应时间、吞吐量和错误率,从而促进 API 服务的持续改进。通过密切监控这些指标,团队可以快速响应性能下降,确保最佳 API 性能并保持高水平的服务可用性。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。