Amazon CloudWatch 和 Redis 集成

强大的性能和简易的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

对于大规模实时查询,这不是推荐的配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Cloudwatch 和 InfluxDB

5B+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

1B+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。借助 InfluxDB,第一时序平台,可与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件将从 Amazon CloudWatch 拉取指标统计数据,从而简化监控和分析 AWS 资源的过程。

Redis 插件使用户能够将 Telegraf 收集的指标直接发送到 Redis。此集成非常适合需要强大的时序数据存储和分析的应用程序。

集成详情

Amazon CloudWatch

Amazon CloudWatch 插件允许用户从 Amazon 的 CloudWatch 服务中拉取详细的指标统计信息。作为一种监控解决方案,CloudWatch 使户能够跟踪与 AWS 资源和应用程序相关的各种指标,从而改进运营和性能洞察。该插件使用结构化的身份验证方法,通过结合 STS(安全令牌服务)、共享凭证、环境变量和 EC2 实例配置文件,优先考虑安全性和灵活性,确保对 AWS 资源的强大访问控制。主要功能包括定义特定指标命名空间、指标聚合周期以及可选地包含链接账户以进行跨账户监控。此插件的一个重要方面是它能够处理稀疏和密集指标格式,从而允许根据用户偏好使用不同的输出结构。因此,它通过直接从 CloudWatch 提供全面、及时的数据,支持云监控和分析中的多种用例。

Redis

Redis Telegraf 插件旨在将指标写入 RedisTimeSeries,这是一个专门用于时序数据的 Redis 数据库模块。此插件促进了 Telegraf 与 RedisTimeSeries 的集成,从而可以高效地存储和检索带时间戳的数据。借助 RedisTimeSeries,用户可以利用增强的功能来管理时序数据,包括聚合视图和范围查询。该插件提供了各种配置选项,以实现安全连接到 Redis 数据库所需的灵活性,包括对身份验证、超时、数据类型转换和 TLS 配置的支持。底层技术利用了 Redis 的效率和可扩展性,使其成为高容量指标环境的绝佳选择,在这些环境中,实时处理至关重要。

配置

Amazon CloudWatch

[[inputs.cloudwatch]]
  region = "us-east-1"
  # access_key = ""
  # secret_key = ""
  # token = ""
  # role_arn = ""
  # web_identity_token_file = ""
  # role_session_name = ""
  # profile = ""
  # shared_credential_file = ""
  # include_linked_accounts = false
  # endpoint_url = ""
  # use_system_proxy = false
  # http_proxy_url = "http://localhost:8888"
  period = "5m"
  delay = "5m"
  interval = "5m"
  #recently_active = "PT3H"
  # cache_ttl = "1h"
  namespaces = ["AWS/ELB"]
  # metric_format = "sparse"
  # ratelimit = 25
  # timeout = "5s"
  # batch_size = 500
  # statistic_include = ["average", "sum", "minimum", "maximum", sample_count]
  # statistic_exclude = []
  # [[inputs.cloudwatch.metrics]]
  #  names = ["Latency", "RequestCount"]
  #  [[inputs.cloudwatch.metrics.dimensions]]
  #    name = "LoadBalancerName"
  #    value = "p-example"

Redis

[[outputs.redistimeseries]]
  ## The address of the RedisTimeSeries server.
  address = "127.0.0.1:6379"

  ## Redis ACL credentials
  # username = ""
  # password = ""
  # database = 0

  ## Timeout for operations such as ping or sending metrics
  # timeout = "10s"

  ## Enable attempt to convert string fields to numeric values
  ## If "false" or in case the string value cannot be converted the string
  ## field will be dropped.
  # convert_string_fields = true

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  # insecure_skip_verify = false

输入和输出集成示例

Amazon CloudWatch

  1. 跨账户监控:通过启用 include_linked_accounts 选项,利用此插件监控跨多个 AWS 账户的资源。这种情况允许管理多个 AWS 账户的公司将指标聚合到中央监控仪表板中,从而提供所有指标的统一视图,同时通过适当的角色管理确保安全的数据访问和合规性。

  2. 动态警报系统:将此插件与警报工具集成,以创建一个自动化系统,该系统根据为 CloudWatch 指标定义的阈值触发警报。例如,如果延迟指标超过指定限制,则可以将警报发送给相关团队,从而能够主动响应性能问题并减少停机时间。

  3. 成本管理仪表板:使用从插件收集的指标构建成本管理仪表板,该仪表板可视化 AWS 服务使用指标随时间的变化。通过将这些指标与计费数据相关联,组织可以识别高成本服务,并采取明智的措施来优化其资源使用和支出。

  4. 应用程序性能基准测试:利用从 AWS 上运行的应用程序收集的指标来执行性能基准测试。例如,通过跟踪 ELB 的延迟和请求计数指标,开发人员可以评估应用程序更改对其性能的影响,从而为优化做出数据驱动的决策。

Redis

  1. 监控物联网传感器数据:利用 Redis Telegraf 插件实时收集和存储来自物联网传感器的数据。通过将插件连接到 RedisTimeSeries 数据库,用户可以分析温度、湿度或其他环境因素的趋势。高效查询历史传感器数据的能力将有助于预测性维护并帮助进行资源管理。

  2. 金融市场数据聚合:使用此插件跟踪和存储来自各种来源的时间敏感的金融数据。通过将指标发送到 Redis,金融机构可以聚合和分析市场趋势或价格随时间的变化,从而为他们提供从可靠的时序分析中获得的可操作的见解。

  3. 应用程序性能监控 (APM):实施 Redis 插件以收集应用程序性能指标,例如响应时间和 CPU 使用率。用户可以使用 RedisTimeSeries 可视化其应用程序随时间的性能,从而使他们能够快速识别瓶颈并优化资源分配。

  4. 能源消耗跟踪:利用此插件监控建筑物随时间的能源使用情况。通过与智能电表集成并将数据发送到 RedisTimeSeries,市政当局或企业可以分析能源消耗模式,从而帮助实施节能措施和可持续发展实践。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。借助 InfluxDB,第一时序平台,可与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成