Amazon CloudWatch 和 MariaDB 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Cloudwatch 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大性能,无限扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它会更有价值。 借助 InfluxDB,第一时序平台构建为与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件将从 Amazon CloudWatch 拉取指标统计信息,从而简化监控和分析 AWS 资源的过程。

此插件使用参数化的 SQL INSERT 语句将来自 Telegraf 的指标直接写入 MariaDB,从而提供了一种将指标存储在结构化关系表中的灵活方法。

集成详情

Amazon CloudWatch

Amazon CloudWatch 插件允许用户从 Amazon 的 CloudWatch 服务中提取详细的指标统计信息。作为一种监控解决方案,CloudWatch 使户能够跟踪与 AWS 资源和应用程序相关的各种指标,从而有助于改进运营和性能洞察。该插件使用结构化的身份验证方法,通过 STS(安全令牌服务)、共享凭证、环境变量和 EC2 实例配置文件相结合,优先考虑安全性和灵活性,确保对 AWS 资源的强大访问控制。主要功能包括定义特定指标命名空间、指标聚合周期以及可选包含链接账户以进行跨账户监控的能力。此插件的一个重要方面是它能够处理稀疏和密集指标格式,从而根据用户偏好允许不同的输出结构。因此,它通过提供直接来自 CloudWatch 的全面、及时的数据,支持云监控和分析中的多种用例。

MariaDB

Telegraf 中的 SQL 输出插件支持通过执行参数化的 SQL 语句将指标直接写入 SQL 兼容的数据库(如 MariaDB)。通过支持 MySQL 驱动程序,该插件与 MariaDB 无缝集成,以实现可靠的结构化指标存储。此设置非常适合喜欢基于 SQL 的分析或希望将指标与业务数据一起存储以进行统一查询的用户。MariaDB 是 MySQL 的社区开发的、企业级的分支,强调性能、安全性和开放性。该插件支持将时序指标插入自定义架构,从而可以使用 SQL 连接器灵活地进行分析并与 Metabase 或 Grafana 等 BI 工具集成。

配置

Amazon CloudWatch

[[inputs.cloudwatch]]
  region = "us-east-1"
  # access_key = ""
  # secret_key = ""
  # token = ""
  # role_arn = ""
  # web_identity_token_file = ""
  # role_session_name = ""
  # profile = ""
  # shared_credential_file = ""
  # include_linked_accounts = false
  # endpoint_url = ""
  # use_system_proxy = false
  # http_proxy_url = "http://localhost:8888"
  period = "5m"
  delay = "5m"
  interval = "5m"
  #recently_active = "PT3H"
  # cache_ttl = "1h"
  namespaces = ["AWS/ELB"]
  # metric_format = "sparse"
  # ratelimit = 25
  # timeout = "5s"
  # batch_size = 500
  # statistic_include = ["average", "sum", "minimum", "maximum", sample_count]
  # statistic_exclude = []
  # [[inputs.cloudwatch.metrics]]
  #  names = ["Latency", "RequestCount"]
  #  [[inputs.cloudwatch.metrics.dimensions]]
  #    name = "LoadBalancerName"
  #    value = "p-example"

MariaDB

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ##  sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
  driver = "mysql"

  ## Data source name
  ## The format of the data source name is different for each database driver.
  ## See the plugin readme for details.
  data_source_name = "username:password@tcp(host:port)/dbname"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS} - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE}({COLUMNS})"

  ## SQL INSERT statement with placeholders. Telegraf will substitute values at runtime.
  ## table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - tablename as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL
  init_sql = "SET sql_mode='ANSI_QUOTES';"

  ## Maximum amount of time a connection may be idle. "0s" means connections are
  ## never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections
  ## are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of the
  ## table

  ## Metric type to SQL type conversion
  ## The values on the left are the data types Telegraf has and the values on
  ## the right are the data types Telegraf will use when sending to a database.
  ##
  ## The database values used must be data types the destination database
  ## understands. It is up to the user to ensure that the selected data type is
  ## available in the database they are using. Refer to your database
  ## documentation for what data types are available and supported.
  #[outputs.sql.convert]
  #  integer              = "INT"
  #  real                 = "DOUBLE"
  #  text                 = "TEXT"
  #  timestamp            = "TIMESTAMP"
  #  defaultvalue         = "TEXT"
  #  unsigned             = "UNSIGNED"
  #  bool                 = "BOOL"
  #  ## This setting controls the behavior of the unsigned value. By default the
  #  ## setting will take the integer value and append the unsigned value to it. The other
  #  ## option is "literal", which will use the actual value the user provides to
  #  ## the unsigned option. This is useful for a database like ClickHouse where
  #  ## the unsigned value should use a value like "uint64".
  #  # conversion_style = "unsigned_suffix"

输入和输出集成示例

Amazon CloudWatch

  1. 跨账户监控:通过启用 include_linked_accounts 选项,利用此插件来监控多个 AWS 账户中的资源。这种情况允许管理多个 AWS 账户的公司将指标聚合到中央监控仪表板中,从而提供所有指标的统一视图,同时通过适当的角色管理确保安全的数据访问和合规性。

  2. 动态警报系统:将此插件与警报工具集成,以创建一个自动化系统,该系统根据 CloudWatch 指标的已定义阈值触发警报。例如,如果延迟指标超过指定限制,则可以将警报发送到相关团队,从而能够对性能问题做出主动响应并减少停机时间。

  3. 成本管理仪表板:使用从插件收集的指标构建成本管理仪表板,该仪表板可视化 AWS 服务随时间的使用指标。通过将这些指标与账单数据相关联,组织可以识别高成本服务,并采取明智的措施来优化其资源使用和支出。

  4. 应用程序的性能基准测试:利用从 AWS 上运行的应用程序收集的指标来执行性能基准测试。例如,通过跟踪 ELB 的延迟和请求计数指标,开发人员可以评估应用程序更改对其性能的影响,从而为优化做出数据驱动的决策。

MariaDB

  1. 商业智能集成:将应用程序性能指标直接存储到 MariaDB 中,并将其连接到 Metabase 或 Apache Superset 等 BI 工具。此设置允许将运营数据与业务 KPI 混合以获得统一的仪表板,从而增强跨部门的可见性。

  2. 具有历史指标的合规性报告:使用此插件将指标记录到 MariaDB 中以用于审计和合规性用例。关系模型支持使用时间戳条目精确查询过去的绩效指标,从而支持监管文档。

  3. 基于 SQL 逻辑的自定义警报:将指标插入 MariaDB,并使用自定义 SQL 查询来定义警报阈值或条件。结合 cron 作业或计划脚本,这可以实现传统指标平台无法实现的高级警报工作流程。

  4. 物联网传感器指标存储:通过 Telegraf 收集来自物联网设备的传感器数据,并使用规范化架构将其存储在 MariaDB 中。这种方法具有成本效益,并且可以与现有的基于 SQL 的系统良好集成,以进行实时或历史分析。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大性能,无限扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它会更有价值。 借助 InfluxDB,第一时序平台构建为与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成