目录
输入和输出集成概述
此插件将从 Amazon CloudWatch 拉取指标统计信息,从而简化监控和分析 AWS 资源的过程。
此插件使用参数化的 SQL INSERT 语句将来自 Telegraf 的指标直接写入 MariaDB,从而提供了一种将指标存储在结构化关系表中的灵活方法。
集成详情
Amazon CloudWatch
Amazon CloudWatch 插件允许用户从 Amazon 的 CloudWatch 服务中提取详细的指标统计信息。作为一种监控解决方案,CloudWatch 使户能够跟踪与 AWS 资源和应用程序相关的各种指标,从而有助于改进运营和性能洞察。该插件使用结构化的身份验证方法,通过 STS(安全令牌服务)、共享凭证、环境变量和 EC2 实例配置文件相结合,优先考虑安全性和灵活性,确保对 AWS 资源的强大访问控制。主要功能包括定义特定指标命名空间、指标聚合周期以及可选包含链接账户以进行跨账户监控的能力。此插件的一个重要方面是它能够处理稀疏和密集指标格式,从而根据用户偏好允许不同的输出结构。因此,它通过提供直接来自 CloudWatch 的全面、及时的数据,支持云监控和分析中的多种用例。
MariaDB
Telegraf 中的 SQL 输出插件支持通过执行参数化的 SQL 语句将指标直接写入 SQL 兼容的数据库(如 MariaDB)。通过支持 MySQL 驱动程序,该插件与 MariaDB 无缝集成,以实现可靠的结构化指标存储。此设置非常适合喜欢基于 SQL 的分析或希望将指标与业务数据一起存储以进行统一查询的用户。MariaDB 是 MySQL 的社区开发的、企业级的分支,强调性能、安全性和开放性。该插件支持将时序指标插入自定义架构,从而可以使用 SQL 连接器灵活地进行分析并与 Metabase 或 Grafana 等 BI 工具集成。
配置
Amazon CloudWatch
[[inputs.cloudwatch]]
region = "us-east-1"
# access_key = ""
# secret_key = ""
# token = ""
# role_arn = ""
# web_identity_token_file = ""
# role_session_name = ""
# profile = ""
# shared_credential_file = ""
# include_linked_accounts = false
# endpoint_url = ""
# use_system_proxy = false
# http_proxy_url = "http://localhost:8888"
period = "5m"
delay = "5m"
interval = "5m"
#recently_active = "PT3H"
# cache_ttl = "1h"
namespaces = ["AWS/ELB"]
# metric_format = "sparse"
# ratelimit = 25
# timeout = "5s"
# batch_size = 500
# statistic_include = ["average", "sum", "minimum", "maximum", sample_count]
# statistic_exclude = []
# [[inputs.cloudwatch.metrics]]
# names = ["Latency", "RequestCount"]
# [[inputs.cloudwatch.metrics.dimensions]]
# name = "LoadBalancerName"
# value = "p-example"
MariaDB
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
driver = "mysql"
## Data source name
## The format of the data source name is different for each database driver.
## See the plugin readme for details.
data_source_name = "username:password@tcp(host:port)/dbname"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE}({COLUMNS})"
## SQL INSERT statement with placeholders. Telegraf will substitute values at runtime.
## table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"
## Table existence check template
## Available template variables:
## {TABLE} - tablename as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL
init_sql = "SET sql_mode='ANSI_QUOTES';"
## Maximum amount of time a connection may be idle. "0s" means connections are
## never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections
## are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of the
## table
## Metric type to SQL type conversion
## The values on the left are the data types Telegraf has and the values on
## the right are the data types Telegraf will use when sending to a database.
##
## The database values used must be data types the destination database
## understands. It is up to the user to ensure that the selected data type is
## available in the database they are using. Refer to your database
## documentation for what data types are available and supported.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
# ## This setting controls the behavior of the unsigned value. By default the
# ## setting will take the integer value and append the unsigned value to it. The other
# ## option is "literal", which will use the actual value the user provides to
# ## the unsigned option. This is useful for a database like ClickHouse where
# ## the unsigned value should use a value like "uint64".
# # conversion_style = "unsigned_suffix"
输入和输出集成示例
Amazon CloudWatch
-
跨账户监控:通过启用
include_linked_accounts
选项,利用此插件来监控多个 AWS 账户中的资源。这种情况允许管理多个 AWS 账户的公司将指标聚合到中央监控仪表板中,从而提供所有指标的统一视图,同时通过适当的角色管理确保安全的数据访问和合规性。 -
动态警报系统:将此插件与警报工具集成,以创建一个自动化系统,该系统根据 CloudWatch 指标的已定义阈值触发警报。例如,如果延迟指标超过指定限制,则可以将警报发送到相关团队,从而能够对性能问题做出主动响应并减少停机时间。
-
成本管理仪表板:使用从插件收集的指标构建成本管理仪表板,该仪表板可视化 AWS 服务随时间的使用指标。通过将这些指标与账单数据相关联,组织可以识别高成本服务,并采取明智的措施来优化其资源使用和支出。
-
应用程序的性能基准测试:利用从 AWS 上运行的应用程序收集的指标来执行性能基准测试。例如,通过跟踪 ELB 的延迟和请求计数指标,开发人员可以评估应用程序更改对其性能的影响,从而为优化做出数据驱动的决策。
MariaDB
-
商业智能集成:将应用程序性能指标直接存储到 MariaDB 中,并将其连接到 Metabase 或 Apache Superset 等 BI 工具。此设置允许将运营数据与业务 KPI 混合以获得统一的仪表板,从而增强跨部门的可见性。
-
具有历史指标的合规性报告:使用此插件将指标记录到 MariaDB 中以用于审计和合规性用例。关系模型支持使用时间戳条目精确查询过去的绩效指标,从而支持监管文档。
-
基于 SQL 逻辑的自定义警报:将指标插入 MariaDB,并使用自定义 SQL 查询来定义警报阈值或条件。结合 cron 作业或计划脚本,这可以实现传统指标平台无法实现的高级警报工作流程。
-
物联网传感器指标存储:通过 Telegraf 收集来自物联网设备的传感器数据,并使用规范化架构将其存储在 MariaDB 中。这种方法具有成本效益,并且可以与现有的基于 SQL 的系统良好集成,以进行实时或历史分析。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。