亚马逊 CloudWatch 和 Loki 集成

强大的性能和简易的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Cloudwatch 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展性

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。借助 InfluxDB,排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件将从 Amazon CloudWatch 拉取指标统计信息,从而简化监控和分析 AWS 资源的过程。

Loki 插件允许用户将日志发送到 Loki 进行聚合和查询,从而利用 Loki 高效的存储能力。

集成详情

亚马逊 CloudWatch

Amazon CloudWatch 插件允许用户从 Amazon 的 CloudWatch 服务拉取详细的指标统计信息。作为一种监控解决方案,CloudWatch 使​​用户能够跟踪与 AWS 资源和应用程序相关的各种指标,从而改进运营和性能洞察。该插件使用结构化的身份验证方法,通过 STS(安全令牌服务)、共享凭证、环境变量和 EC2 实例配置文件相结合,优先考虑安全性和灵活性,确保对 AWS 资源的强大访问控制。主要功能包括定义特定指标命名空间、指标聚合周期以及可选包含链接账户以进行跨账户监控的能力。此插件的一个重要方面是它能够处理稀疏和密集指标格式,从而根据用户偏好允许不同的输出结构。因此,它通过提供直接来自 CloudWatch 的全面、及时的数据,支持云监控和分析中的多种用例。

Loki

此 Loki 插件与 Grafana Loki 集成,Grafana Loki 是一个强大的日志聚合系统。通过以与 Loki 兼容的格式发送日志,此插件可以高效地存储和查询日志。每个日志条目都以键值格式结构化,其中键表示字段名称,值表示相应的日志信息。按时间戳对日志进行排序可确保日志流在通过 Loki 查询时保持时间顺序。此插件对密钥的支持使安全管理身份验证参数变得更加容易,而 HTTP 标头、gzip 编码和 TLS 配置选项增强了日志传输的适应性和安全性,满足各种部署需求。

配置

亚马逊 CloudWatch

[[inputs.cloudwatch]]
  region = "us-east-1"
  # access_key = ""
  # secret_key = ""
  # token = ""
  # role_arn = ""
  # web_identity_token_file = ""
  # role_session_name = ""
  # profile = ""
  # shared_credential_file = ""
  # include_linked_accounts = false
  # endpoint_url = ""
  # use_system_proxy = false
  # http_proxy_url = "http://localhost:8888"
  period = "5m"
  delay = "5m"
  interval = "5m"
  #recently_active = "PT3H"
  # cache_ttl = "1h"
  namespaces = ["AWS/ELB"]
  # metric_format = "sparse"
  # ratelimit = 25
  # timeout = "5s"
  # batch_size = 500
  # statistic_include = ["average", "sum", "minimum", "maximum", sample_count]
  # statistic_exclude = []
  # [[inputs.cloudwatch.metrics]]
  #  names = ["Latency", "RequestCount"]
  #  [[inputs.cloudwatch.metrics.dimensions]]
  #    name = "LoadBalancerName"
  #    value = "p-example"

Loki

[[outputs.loki]]
  ## The domain of Loki
  domain = "https://loki.domain.tld"

  ## Endpoint to write api
  # endpoint = "/loki/api/v1/push"

  ## Connection timeout, defaults to "5s" if not set.
  # timeout = "5s"

  ## Basic auth credential
  # username = "loki"
  # password = "pass"

  ## Additional HTTP headers
  # http_headers = {"X-Scope-OrgID" = "1"}

  ## If the request must be gzip encoded
  # gzip_request = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"

  ## Sanitize Tag Names
  ## If true, all tag names will have invalid characters replaced with
  ## underscores that do not match the regex: ^[a-zA-Z_:][a-zA-Z0-9_:]*.
  # sanitize_label_names = false

  ## Metric Name Label
  ## Label to use for the metric name to when sending metrics. If set to an
  ## empty string, this will not add the label. This is NOT suggested as there
  ## is no way to differentiate between multiple metrics.
  # metric_name_label = "__name"

输入和输出集成示例

亚马逊 CloudWatch

  1. 跨账户监控:通过启用 include_linked_accounts 选项,利用此插件跨多个 AWS 账户监控资源。这种情况允许管理多个 AWS 账户的公司将指标聚合到中央监控仪表板中,从而提供所有指标的统一视图,同时通过适当的角色管理确保安全的数据访问和合规性。

  2. 动态警报系统:将此插件与警报工具集成,以创建一个自动化系统,该系统根据 CloudWatch 指标的已定义阈值触发警报。例如,如果延迟指标超过指定限制,则可以将警报发送给相关团队,从而能够对性能问题做出主动响应并减少停机时间。

  3. 成本管理仪表板:使用从此插件收集的指标构建成本管理仪表板,该仪表板可视化 AWS 服务随时间的使用情况指标。通过将这些指标与计费数据相关联,组织可以识别高成本服务,并采取明智的措施来优化其资源使用和支出。

  4. 应用程序的性能基准测试:利用从 AWS 上运行的应用程序收集的指标来执行性能基准测试。例如,通过跟踪 ELB 的延迟和请求计数指标,开发人员可以评估应用程序更改对其性能的影响,从而为优化做出数据驱动的决策。

Loki

  1. 微服务的集中日志记录:利用 Loki 插件从 Kubernetes 集群中运行的多个微服务收集日志。通过将日志定向到集中的 Loki 实例,开发人员可以在一个位置监控、搜索和分析来自所有服务的日志,从而更轻松地进行故障排除和性能监控。此设置简化了操作,并支持对分布式应用程序中的问题做出快速响应。

  2. 实时日志异常检测:将 Loki 与监控工具结合使用,以实时分析日志输出中可能表明系统错误或安全威胁的异常模式。在日志流上实施异常检测使团队能够主动识别和响应事件,从而提高系统可靠性并增强安全态势。

  3. 通过 Gzip 压缩增强日志处理:配置 Loki 插件以利用 gzip 压缩进行日志传输。这种方法可以减少带宽使用并提高传输速度,这在网络带宽可能受到限制的环境中尤其有利。它对于高容量日志记录应用程序特别有用,在这些应用程序中,每个字节都很重要,并且性能至关重要。

  4. 通过自定义标头支持多租户:利用添加自定义 HTTP 标头的功能来隔离多租户应用程序环境中来自不同租户的日志。通过使用 Loki 插件为每个租户发送不同的标头,运营商可以确保适当的日志管理并符合数据隔离要求,使其成为 SaaS 应用程序的通用解决方案。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展性

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。借助 InfluxDB,排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成