Amazon CloudWatch 和 IoTDB 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

对于大规模实时查询,这不是推荐的配置。为了优化查询和压缩、高速摄取和高可用性,您可能需要考虑 Cloudwatch 和 InfluxDB

5B+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

1B+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理大量高速数据。当您将任何数据视为时序数据时,它会更有价值。InfluxDB 是排名第一的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

输入和输出集成概述

此插件将从 Amazon CloudWatch 拉取指标统计信息,从而简化监控和分析 AWS 资源的过程。

此插件将 Telegraf 指标保存到 Apache IoTDB 后端,支持会话连接和数据插入。

集成详情

Amazon CloudWatch

Amazon CloudWatch 插件允许用户从 Amazon 的 CloudWatch 服务中拉取详细的指标统计信息。作为一种监控解决方案,CloudWatch 使用户能够跟踪与 AWS 资源和应用程序相关的各种指标,从而改进操作和性能洞察。该插件使用结构化的身份验证方法,通过结合 STS(安全令牌服务)、共享凭证、环境变量和 EC2 实例配置文件来优先考虑安全性和灵活性,从而确保对 AWS 资源的强大访问控制。主要功能包括定义特定指标命名空间、指标聚合周期以及可选地包含链接帐户以进行跨帐户监控的能力。此插件的一个重要方面是它能够处理稀疏和密集指标格式,从而根据用户偏好允许不同的输出结构。因此,它通过直接从 CloudWatch 提供全面、及时的数据,支持云监控和分析中的多种用例。

IoTDB

Apache IoTDB(物联网数据库)是一种物联网原生数据库,具有高性能的数据管理和分析能力,可部署在边缘和云端。其轻量级架构、高性能和丰富的功能集使其非常适合物联网工业领域中的海量数据存储、高速数据摄取和复杂分析。IoTDB 与 Apache Hadoop、Spark 和 Flink 深度集成,进一步增强了其处理大规模数据和复杂处理任务的能力。

配置

Amazon CloudWatch

[[inputs.cloudwatch]]
  region = "us-east-1"
  # access_key = ""
  # secret_key = ""
  # token = ""
  # role_arn = ""
  # web_identity_token_file = ""
  # role_session_name = ""
  # profile = ""
  # shared_credential_file = ""
  # include_linked_accounts = false
  # endpoint_url = ""
  # use_system_proxy = false
  # http_proxy_url = "http://localhost:8888"
  period = "5m"
  delay = "5m"
  interval = "5m"
  #recently_active = "PT3H"
  # cache_ttl = "1h"
  namespaces = ["AWS/ELB"]
  # metric_format = "sparse"
  # ratelimit = 25
  # timeout = "5s"
  # batch_size = 500
  # statistic_include = ["average", "sum", "minimum", "maximum", sample_count]
  # statistic_exclude = []
  # [[inputs.cloudwatch.metrics]]
  #  names = ["Latency", "RequestCount"]
  #  [[inputs.cloudwatch.metrics.dimensions]]
  #    name = "LoadBalancerName"
  #    value = "p-example"

IoTDB

[[outputs.iotdb]]
  ## Configuration of IoTDB server connection
  host = "127.0.0.1"
  # port = "6667"

  ## Configuration of authentication
  # user = "root"
  # password = "root"

  ## Timeout to open a new session.
  ## A value of zero means no timeout.
  # timeout = "5s"

  ## Configuration of type conversion for 64-bit unsigned int
  ## IoTDB currently DOES NOT support unsigned integers (version 13.x).
  ## 32-bit unsigned integers are safely converted into 64-bit signed integers by the plugin,
  ## however, this is not true for 64-bit values in general as overflows may occur.
  ## The following setting allows to specify the handling of 64-bit unsigned integers.
  ## Available values are:
  ##   - "int64"       --  convert to 64-bit signed integers and accept overflows
  ##   - "int64_clip"  --  convert to 64-bit signed integers and clip the values on overflow to 9,223,372,036,854,775,807
  ##   - "text"        --  convert to the string representation of the value
  # uint64_conversion = "int64_clip"

  ## Configuration of TimeStamp
  ## TimeStamp is always saved in 64bits int. timestamp_precision specifies the unit of timestamp.
  ## Available value:
  ## "second", "millisecond", "microsecond", "nanosecond"(default)
  # timestamp_precision = "nanosecond"

  ## Handling of tags
  ## Tags are not fully supported by IoTDB.
  ## A guide with suggestions on how to handle tags can be found here:
  ##     https://iotdb.apache.org/UserGuide/Master/API/InfluxDB-Protocol.html
  ##
  ## Available values are:
  ##   - "fields"     --  convert tags to fields in the measurement
  ##   - "device_id"  --  attach tags to the device ID
  ##
  ## For Example, a metric named "root.sg.device" with the tags `tag1: "private"`  and  `tag2: "working"` and
  ##  fields `s1: 100`  and `s2: "hello"` will result in the following representations in IoTDB
  ##   - "fields"     --  root.sg.device, s1=100, s2="hello", tag1="private", tag2="working"
  ##   - "device_id"  --  root.sg.device.private.working, s1=100, s2="hello"
  # convert_tags_to = "device_id"

  ## Handling of unsupported characters
  ## Some characters in different versions of IoTDB are not supported in path name
  ## A guide with suggetions on valid paths can be found here:
  ## for iotdb 0.13.x           -> https://iotdb.apache.org/UserGuide/V0.13.x/Reference/Syntax-Conventions.html#identifiers
  ## for iotdb 1.x.x and above  -> https://iotdb.apache.org/UserGuide/V1.3.x/User-Manual/Syntax-Rule.html#identifier
  ##
  ## Available values are:
  ##   - "1.0", "1.1", "1.2", "1.3"  -- enclose in `` the world having forbidden character 
  ##                                    such as @ $ # : [ ] { } ( ) space
  ##   - "0.13"                      -- enclose in `` the world having forbidden character 
  ##                                    such as space
  ##
  ## Keep this section commented if you don't want to sanitize the path
  # sanitize_tag = "1.3"

输入和输出集成示例

Amazon CloudWatch

  1. 跨帐户监控:通过启用 include_linked_accounts 选项,利用此插件跨多个 AWS 帐户监控资源。这种情况允许管理多个 AWS 帐户的公司将指标聚合到中央监控仪表板中,从而提供所有指标的统一视图,同时通过适当的角色管理确保安全的数据访问和合规性。

  2. 动态警报系统:将此插件与警报工具集成,以创建一个自动化系统,该系统基于 CloudWatch 指标的已定义阈值触发警报。例如,如果延迟指标超过指定限制,则可以将警报发送给相关团队,从而能够主动响应性能问题并减少停机时间。

  3. 成本管理仪表板:使用从插件收集的指标构建成本管理仪表板,该仪表板可视化 AWS 服务随时间推移的使用情况指标。通过将这些指标与计费数据相关联,组织可以识别高成本服务,并采取明智的措施来优化其资源使用和支出。

  4. 应用程序的性能基准测试:利用从 AWS 上运行的应用程序收集的指标来执行性能基准测试。例如,通过跟踪 ELB 的延迟和请求计数指标,开发人员可以评估应用程序更改对其性能的影响,从而为优化做出数据驱动的决策。

IoTDB

  1. 实时物联网监控:利用 IoTDB 插件从各种物联网设备收集传感器数据,并将其保存在 Apache IoTDB 后端中,从而实现对温度和湿度等环境条件的实时监控。此用例使组织能够分析随时间推移的趋势并根据历史数据做出明智的决策,同时还利用 IoTDB 的高效存储和查询功能。

  2. 智慧农业数据采集:使用 IoTDB 插件从部署在田间的智慧农业传感器收集指标。通过将湿度水平、养分含量和大气条件传输到 IoTDB,农民可以访问有关最佳种植和浇水计划的详细见解,从而提高作物产量和资源管理。

  3. 能源消耗分析:利用 IoTDB 插件跟踪整个公用事业网络中智能电表的能源消耗指标。这种集成使分析能够识别使用高峰并预测未来的消耗模式,最终支持节能倡议和改进的公用事业管理。

  4. 自动化工业设备监控:使用此插件从制造工厂的机械设备收集运行指标,并将其存储在 IoTDB 中进行分析。这种设置可以帮助识别效率低下、预测性维护需求和运行异常,从而确保最佳性能并最大限度地减少意外停机时间。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您的输入。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理大量高速数据。当您将任何数据视为时序数据时,它会更有价值。InfluxDB 是排名第一的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成