Amazon CloudWatch 和 Azure Data Explorer 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。为了优化查询和压缩、高速摄取和高可用性,您可能需要考虑 Cloudwatch 和 InfluxDB。

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。使用 InfluxDB,第一时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件将从 Amazon CloudWatch 中拉取指标统计信息,从而简化监控和分析 AWS 资源的过程。

Azure Data Explorer 插件允许将指标收集与 Azure Data Explorer 集成,使用户能够高效地分析和查询其遥测数据。借助此插件,用户可以配置摄取设置以满足其需求,并利用 Azure 强大的分析功能。

集成详情

Amazon CloudWatch

Amazon CloudWatch 插件允许用户从 Amazon 的 CloudWatch 服务中拉取详细的指标统计信息。作为一种监控解决方案,CloudWatch 使用户能够跟踪与 AWS 资源和应用程序相关的各种指标,从而改进运营和性能洞察。该插件使用结构化的身份验证方法,通过结合 STS(安全令牌服务)、共享凭证、环境变量和 EC2 实例配置文件来优先考虑安全性和灵活性,从而确保对 AWS 资源的强大访问控制。主要功能包括定义特定指标命名空间、指标聚合周期以及可选包含链接账户以进行跨账户监控的能力。此插件的一个重要方面是它能够处理稀疏和密集指标格式,从而允许根据用户偏好使用不同的输出结构。因此,它通过直接从 CloudWatch 提供全面、及时的数据,支持云监控和分析中的各种用例。

Azure Data Explorer

Azure Data Explorer 插件允许用户将从各种 Telegraf 输入插件收集的指标、日志和时序数据写入 Azure Data Explorer、Azure Synapse 和 Fabric 中的实时分析。此集成充当桥梁,使应用程序和服务能够有效地监控其性能指标或日志。Azure Data Explorer 针对对大量不同数据类型的分析进行了优化,使其成为云环境中实时分析和监控解决方案的绝佳选择。该插件使用户能够根据其要求配置指标摄取,动态定义表架构,并设置各种摄取方法,同时保留数据库操作所需的角色和权限的灵活性。这支持利用云服务的现代应用程序的可扩展且安全的监控设置。

配置

Amazon CloudWatch

[[inputs.cloudwatch]]
  region = "us-east-1"
  # access_key = ""
  # secret_key = ""
  # token = ""
  # role_arn = ""
  # web_identity_token_file = ""
  # role_session_name = ""
  # profile = ""
  # shared_credential_file = ""
  # include_linked_accounts = false
  # endpoint_url = ""
  # use_system_proxy = false
  # http_proxy_url = "http://localhost:8888"
  period = "5m"
  delay = "5m"
  interval = "5m"
  #recently_active = "PT3H"
  # cache_ttl = "1h"
  namespaces = ["AWS/ELB"]
  # metric_format = "sparse"
  # ratelimit = 25
  # timeout = "5s"
  # batch_size = 500
  # statistic_include = ["average", "sum", "minimum", "maximum", sample_count]
  # statistic_exclude = []
  # [[inputs.cloudwatch.metrics]]
  #  names = ["Latency", "RequestCount"]
  #  [[inputs.cloudwatch.metrics.dimensions]]
  #    name = "LoadBalancerName"
  #    value = "p-example"

Azure Data Explorer

[[outputs.azure_data_explorer]]
  ## The URI property of the Azure Data Explorer resource on Azure
  ## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
  endpoint_url = ""

  ## The Azure Data Explorer database that the metrics will be ingested into.
  ## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
  ## ex: "exampledatabase"
  database = ""

  ## Timeout for Azure Data Explorer operations
  # timeout = "20s"

  ## Type of metrics grouping used when pushing to Azure Data Explorer.
  ## Default is "TablePerMetric" for one table per different metric.
  ## For more information, please check the plugin README.
  # metrics_grouping_type = "TablePerMetric"

  ## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
  # table_name = ""

  ## Creates tables and relevant mapping if set to true(default).
  ## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
  # create_tables = true

  ##  Ingestion method to use.
  ##  Available options are
  ##    - managed  --  streaming ingestion with fallback to batched ingestion or the "queued" method below
  ##    - queued   --  queue up metrics data and process sequentially
  # ingestion_type = "queued"

输入和输出集成示例

Amazon CloudWatch

  1. 跨账户监控:通过启用 include_linked_accounts 选项,利用此插件来监控跨多个 AWS 账户的资源。此场景允许管理多个 AWS 账户的公司将指标聚合到中央监控仪表板中,从而提供所有指标的统一视图,同时通过适当的角色管理确保安全的数据访问和合规性。

  2. 动态警报系统:将此插件与警报工具集成,以创建基于 CloudWatch 指标的已定义阈值触发警报的自动化系统。例如,如果延迟指标超过指定限制,则可以将警报发送给相关团队,从而能够主动响应性能问题并减少停机时间。

  3. 成本管理仪表板:使用从插件收集的指标构建成本管理仪表板,该仪表板可视化 AWS 服务随时间推移的使用情况指标。通过将这些指标与计费数据相关联,组织可以识别高成本服务,并采取明智的措施来优化其资源使用和支出。

  4. 应用程序的性能基准测试:利用从 AWS 上运行的应用程序收集的指标来执行性能基准测试。例如,通过跟踪 ELB 的延迟和请求计数指标,开发人员可以评估应用程序更改对其性能的影响,从而做出数据驱动的优化决策。

Azure Data Explorer

  1. 实时监控仪表板:通过使用此插件将来自各种服务的指标集成到 Azure Data Explorer 中,组织可以构建反映实时性能指标的综合仪表板。这使团队能够主动响应性能问题并立即优化系统健康状况。

  2. 集中式日志管理:利用 Azure Data Explorer 来整合来自多个应用程序和服务的日志。通过利用该插件,组织可以简化其日志分析流程,从而更轻松地搜索、过滤和从随时间累积的历史数据中获取见解。

  3. 数据驱动的警报系统:通过基于通过此插件发送的指标配置警报来增强监控功能。组织可以设置阈值并自动化事件响应,从而显着减少停机时间并提高关键操作的可靠性。

  4. 机器学习模型训练:通过利用发送到 Azure Data Explorer 的数据,组织可以执行大规模分析并准备数据以馈送到机器学习模型中。此插件支持数据结构化,这些数据随后可用于预测分析,从而提高决策能力。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。使用 InfluxDB,第一时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成