目录
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法
输入和输出集成概述
Telegraf 的 Ceph 插件有助于收集 Ceph 存储集群中 MON 和 OSD 节点的性能指标,以实现有效的监控和管理。
此输出插件为将 Telegraf 收集的指标直接路由到 TimescaleDB 提供了一种可靠高效的机制。通过利用 PostgreSQL 强大的生态系统以及 TimescaleDB 的时间序列优化,它支持高性能数据摄取和高级查询功能。
集成详情
Ceph
Ceph Storage Telegraf 插件旨在收集 Ceph 存储集群中 Monitor (MON) 和 Object Storage Daemon (OSD) 节点的性能指标。Ceph 是一种高度可扩展的存储系统,通过此插件集成其指标收集,从而方便监控其组件。随着 13.x Mimic 版本中引入此插件,用户可以有效地收集有关其 Ceph 基础设施性能和运行状况的详细见解。它的工作原理是扫描配置的套接字目录以查找特定的 Ceph 服务套接字文件,通过 Ceph 管理界面执行命令,并解析返回的 JSON 数据以获取指标。指标基于顶层键进行组织,从而可以高效地监控和分析集群性能。此插件通过允许管理员了解系统行为并主动识别潜在问题,为管理和维护 Ceph 集群的性能提供了有价值的功能。
TimescaleDB
TimescaleDB 是一个开源时间序列数据库,构建为 PostgreSQL 的扩展,旨在高效处理大规模、面向时间的数据。TimescaleDB 于 2017 年推出,是为了响应对能够管理海量数据、具有高插入速率和复杂查询的强大、可扩展解决方案日益增长的需求。通过利用 PostgreSQL 熟悉的 SQL 界面并通过专门的时间序列功能对其进行增强,TimescaleDB 迅速在希望将时间序列功能集成到现有关系数据库中的开发人员中流行起来。其混合方法允许用户受益于 PostgreSQL 的灵活性、可靠性和生态系统,同时为时间序列数据提供优化的性能。
该数据库在需要快速摄取数据点以及对历史时期进行复杂分析查询的环境中尤其有效。TimescaleDB 具有许多创新功能,例如将数据透明地分区为可管理块的超表和内置的连续聚合。这些功能可以显着提高查询速度和资源效率。
配置
Ceph
[[inputs.ceph]]
## This is the recommended interval to poll. Too frequent and you
## will lose data points due to timeouts during rebalancing and recovery
interval = '1m'
## All configuration values are optional, defaults are shown below
## location of ceph binary
ceph_binary = "/usr/bin/ceph"
## directory in which to look for socket files
socket_dir = "/var/run/ceph"
## prefix of MON and OSD socket files, used to determine socket type
mon_prefix = "ceph-mon"
osd_prefix = "ceph-osd"
mds_prefix = "ceph-mds"
rgw_prefix = "ceph-client"
## suffix used to identify socket files
socket_suffix = "asok"
## Ceph user to authenticate as, ceph will search for the corresponding
## keyring e.g. client.admin.keyring in /etc/ceph, or the explicit path
## defined in the client section of ceph.conf for example:
##
## [client.telegraf]
## keyring = /etc/ceph/client.telegraf.keyring
##
## Consult the ceph documentation for more detail on keyring generation.
ceph_user = "client.admin"
## Ceph configuration to use to locate the cluster
ceph_config = "/etc/ceph/ceph.conf"
## Whether to gather statistics via the admin socket
gather_admin_socket_stats = true
## Whether to gather statistics via ceph commands, requires ceph_user
## and ceph_config to be specified
gather_cluster_stats = false
TimescaleDB
# Publishes metrics to a TimescaleDB database
[[outputs.postgresql]]
## Specify connection address via the standard libpq connection string:
## host=... user=... password=... sslmode=... dbname=...
## Or a URL:
## postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
##
## All connection parameters are optional. Environment vars are also supported.
## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
## All supported vars can be found here:
## https://postgresql.ac.cn/docs/current/libpq-envars.html
##
## Non-standard parameters:
## pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
## pool_min_conns (default: 0) - Minimum size of connection pool.
## pool_max_conn_lifetime (default: 0s) - Maximum connection age before closing.
## pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
## pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
# connection = ""
## Postgres schema to use.
# schema = "public"
## Store tags as foreign keys in the metrics table. Default is false.
# tags_as_foreign_keys = false
## Suffix to append to table name (measurement name) for the foreign tag table.
# tag_table_suffix = "_tag"
## Deny inserting metrics if the foreign tag can't be inserted.
# foreign_tag_constraint = false
## Store all tags as a JSONB object in a single 'tags' column.
# tags_as_jsonb = false
## Store all fields as a JSONB object in a single 'fields' column.
# fields_as_jsonb = false
## Name of the timestamp column
## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
# timestamp_column_name = "time"
## Type of the timestamp column
## Currently, "timestamp without time zone" and "timestamp with time zone"
## are supported
# timestamp_column_type = "timestamp without time zone"
## Templated statements to execute when creating a new table.
# create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }})''',
# ]
## Templated statements to execute when adding columns to a table.
## Set to an empty list to disable. Points containing tags for which there is
## no column will be skipped. Points containing fields for which there is no
## column will have the field omitted.
# add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## Templated statements to execute when creating a new tag table.
# tag_table_create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
# ]
## Templated statements to execute when adding columns to a tag table.
## Set to an empty list to disable. Points containing tags for which there is
## no column will be skipped.
# tag_table_add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## The postgres data type to use for storing unsigned 64-bit integer values
## (Postgres does not have a native unsigned 64-bit integer type).
## The value can be one of:
## numeric - Uses the PostgreSQL "numeric" data type.
## uint8 - Requires pguint extension (https://github.com/petere/pguint)
# uint64_type = "numeric"
## When using pool_max_conns > 1, and a temporary error occurs, the query is
## retried with an incremental backoff. This controls the maximum duration.
# retry_max_backoff = "15s"
## Approximate number of tag IDs to store in in-memory cache (when using
## tags_as_foreign_keys). This is an optimization to skip inserting known
## tag IDs. Each entry consumes approximately 34 bytes of memory.
# tag_cache_size = 100000
## Cut column names at the given length to not exceed PostgreSQL's
## 'identifier length' limit (default: no limit)
## (see https://postgresql.ac.cn/docs/current/limits.html)
## Be careful to not create duplicate column names!
# column_name_length_limit = 0
## Enable & set the log level for the Postgres driver.
# log_level = "warn" # trace, debug, info, warn, error, none
输入和输出集成示例
Ceph
-
动态监控仪表板:利用 Ceph 插件创建一个实时监控仪表板,以可视化方式表示 Ceph 集群的性能指标。通过将这些指标集成到集中式仪表板中,系统管理员可以立即深入了解存储基础设施的运行状况,这有助于在潜在问题升级之前快速识别和解决这些问题。
-
自动化警报系统:结合警报解决方案实施 Ceph 插件,以自动通知管理员 Ceph 集群内的性能下降或操作问题。通过为关键指标定义阈值,组织可以确保及时的响应操作,从而提高整体系统可靠性和性能。
-
性能基准测试:使用此插件收集的指标,对 Ceph 存储集群的不同配置或硬件设置进行性能基准测试。此过程可以帮助组织识别可提高性能和资源利用率的最佳配置,从而促进更高效的存储环境。
-
容量规划和预测:将从 Ceph 存储插件收集的指标集成到更广泛的数据分析和报告工具中,以促进容量规划。通过分析历史指标,组织可以预测未来的利用率趋势,从而就有效扩展存储资源做出明智的决策。
TimescaleDB
-
实时物联网数据摄取:使用该插件实时收集和存储来自数千个物联网设备的传感器数据。此设置有助于即时分析,帮助组织监控运营效率并快速响应不断变化的条件。
-
云应用程序性能监控:利用该插件将来自分布式云应用程序的详细性能指标馈送到 TimescaleDB。这种集成支持实时仪表板和警报,使团队能够快速识别和缓解性能瓶颈。
-
历史数据分析和报告:实施一个系统,将长期指标存储在 TimescaleDB 中,以进行全面的历史分析。这种方法允许企业执行趋势分析、生成详细报告并根据存档的时间序列数据做出数据驱动的决策。
-
自适应警报和异常检测:将该插件与自动化异常检测工作流程集成。通过将指标持续流式传输到 TimescaleDB,机器学习模型可以分析数据模式并在发生异常时触发警报,从而提高系统可靠性和主动维护。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法