Ceph 和 Clickhouse 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Ceph 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它会更有价值。 InfluxDB 是排名第一的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

输入和输出集成概述

Telegraf 的 Ceph 插件有助于从 Ceph 存储集群中的 MON 和 OSD 节点收集性能指标,以实现有效的监控和管理。

Telegraf 的 SQL 插件使用简单的表架构和动态列生成将收集的指标发送到 SQL 数据库。 当配置为 ClickHouse 时,它会调整 DSN 格式和类型转换设置,以确保无缝数据集成。

集成详情

Ceph

Ceph Storage Telegraf 插件旨在从 Ceph 存储集群中的 Monitor (MON) 和 Object Storage Daemon (OSD) 节点收集性能指标。 Ceph 是一种高度可扩展的存储系统,通过此插件集成其指标收集,从而方便监控其组件。 随着 13.x Mimic 版本中引入此插件,用户可以有效地收集有关其 Ceph 基础设施性能和运行状况的详细信息。 它的工作原理是扫描配置的套接字目录以查找特定的 Ceph 服务套接字文件,通过 Ceph 管理界面执行命令,并解析返回的 JSON 数据以获取指标。 指标根据顶级键进行组织,从而可以有效地监控和分析集群性能。 该插件通过允许管理员了解系统行为并主动识别潜在问题,为管理和维护 Ceph 集群的性能提供了宝贵的功能。

Clickhouse

Telegraf 的 SQL 插件旨在通过根据传入指标动态创建表和列,将指标数据写入 SQL 数据库。 当配置为 ClickHouse 时,它使用 clickhouse-go v1.5.4 驱动程序,该驱动程序采用独特的 DSN 格式和一组专门的类型转换规则,将 Telegraf 的数据类型直接映射到 ClickHouse 的原生类型。 这种方法确保了高吞吐量环境中的最佳存储和检索性能,使其非常适合实时分析和大规模数据仓库。 动态模式创建和精确的类型映射实现了详细的时序数据日志记录,这对于监控现代分布式系统至关重要。

配置

Ceph

[[inputs.ceph]]
  ## This is the recommended interval to poll. Too frequent and you
  ## will lose data points due to timeouts during rebalancing and recovery
  interval = '1m'

  ## All configuration values are optional, defaults are shown below

  ## location of ceph binary
  ceph_binary = "/usr/bin/ceph"

  ## directory in which to look for socket files
  socket_dir = "/var/run/ceph"

  ## prefix of MON and OSD socket files, used to determine socket type
  mon_prefix = "ceph-mon"
  osd_prefix = "ceph-osd"
  mds_prefix = "ceph-mds"
  rgw_prefix = "ceph-client"

  ## suffix used to identify socket files
  socket_suffix = "asok"

  ## Ceph user to authenticate as, ceph will search for the corresponding
  ## keyring e.g. client.admin.keyring in /etc/ceph, or the explicit path
  ## defined in the client section of ceph.conf for example:
  ##
  ##     [client.telegraf]
  ##         keyring = /etc/ceph/client.telegraf.keyring
  ##
  ## Consult the ceph documentation for more detail on keyring generation.
  ceph_user = "client.admin"

  ## Ceph configuration to use to locate the cluster
  ceph_config = "/etc/ceph/ceph.conf"

  ## Whether to gather statistics via the admin socket
  gather_admin_socket_stats = true

  ## Whether to gather statistics via ceph commands, requires ceph_user
  ## and ceph_config to be specified
  gather_cluster_stats = false

Clickhouse

[[outputs.sql]]
  ## Database driver
  ## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
  driver = "clickhouse"

  ## Data source name
  ## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
  ## Example DSN: "tcp://localhost:9000?debug=true"
  data_source_name = "tcp://localhost:9000?debug=true"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion for ClickHouse.
  ## The conversion maps Telegraf metric types to ClickHouse native data types.
  [outputs.sql.convert]
    conversion_style = "literal"
    integer          = "Int64"
    text             = "String"
    timestamp        = "DateTime"
    defaultvalue     = "String"
    unsigned         = "UInt64"
    bool             = "UInt8"
    real             = "Float64"

输入和输出集成示例

Ceph

  1. 动态监控仪表板: 利用 Ceph 插件创建实时监控仪表板,以可视化表示 Ceph 集群的性能指标。 通过将这些指标集成到集中式仪表板中,系统管理员可以立即了解存储基础设施的运行状况,这有助于在潜在问题升级之前快速识别和解决这些问题。

  2. 自动化警报系统: 实施 Ceph 插件并结合警报解决方案,以自动通知管理员 Ceph 集群内的性能下降或操作问题。 通过为关键指标定义阈值,组织可以确保及时的响应操作,从而提高整体系统可靠性和性能。

  3. 性能基准测试: 使用此插件收集的指标,对 Ceph 存储集群的不同配置或硬件设置进行性能基准测试。 此过程可以帮助组织识别可增强性能和资源利用率的最佳配置,从而促进更高效的存储环境。

  4. 容量规划和预测: 将从 Ceph 存储插件收集的指标集成到更广泛的数据分析和报告工具中,以促进容量规划。 通过分析历史指标,组织可以预测未来的利用率趋势,从而为有效扩展存储资源做出明智的决策。

Clickhouse

  1. 高容量数据的实时分析: 使用该插件将来自大型系统的流式指标馈送到 ClickHouse。 此设置支持超快的查询性能和近乎实时的分析,非常适合监控高流量应用程序。

  2. 时序数据仓库: 将插件与 ClickHouse 集成,以创建强大的时序数据仓库。 此用例允许组织存储详细的历史指标,并执行复杂的查询以进行趋势分析和容量规划。

  3. 分布式环境中的可扩展监控: 利用该插件在 ClickHouse 中为每种指标类型动态创建表,从而更轻松地管理和查询来自大量分布式系统的数据,而无需预先定义模式。

  4. 针对物联网部署的优化存储: 部署该插件以将来自物联网传感器的数据摄取到 ClickHouse 中。 其高效的模式创建和原生类型映射有助于处理海量数据,从而实现实时监控和预测性维护。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它会更有价值。 InfluxDB 是排名第一的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成